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ABSTRACT
Clinicians triage patients who are referred to amedical facility based
on the details provided in their accompanying referral documents,
which contain a mix of free text and structured data. By training a
model to predict triage decisions from these referral documents, we
can partially automate the triage process, resulting in more efficient
and systematic triage decisions. One of the difficulties of this task is
maintaining robustness against changes in triage priorities due to
changes in policy, funding, staff, or other factors. This is reflected
as changes in relationship between document features and triage la-
bels, also known as concept drift. These changes must be detected so
that the model can be retrained to reflect the new environment. We
introduce a new concept drift detection algorithm for this domain
called calibrated drift detection method (CDDM). We evaluated
CDDM on benchmark and synthetic medical triage datasets, and
find it competitive with state-of-the-art detectors, while also being
less prone to false positives from feature drift.
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1 INTRODUCTION
When a patient is referred to a medical facility, the referral is docu-
mented with free text and structured data, containing such infor-
mation as condition, comorbidities, and demographics. From this
data a clinician will make a decision about how urgently the patient
needs to be addressed, and assign the patient a triage priority la-
bel. This documentation presents an opportunity: using supervised
learning we can train a model to predict triage labels for referral
documents, and incorporate it into a decision support system to
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Figure 1: Concept drift detection in medical triage.

help clinicians make more efficient and systematic triage decisions.
For example, clinicians may review referrals in the priority order
recommended by the system.

Staff, resources, policy, and best practices evolve over time in
medical environments, so it is important that a model is able to
detect and adapt to these changes. For example, if one ethnic group
is discovered to be particularly susceptible to some condition, then
clinicians may begin to give this group higher priority. A decision
support system must be able to detect and adapt to these changes.
This kind of change in a data stream is known as concept drift.

Concept drift can be detected by monitoring a model’s accuracy
over time. If there exists a time t such that the model is more
accurate before t than after t , then this is evidence that the nature
of the data stream has changed. If this is the case, then the model
should be retrained on data which occurred after the change at t .
This approach, or variants of it, are the most common strategy for
detecting concept drift [1].

This paper explores concept drift detection for a medical triage
support system. This setting is illustrated in Figure 1. A base learner
is trained on historical examples of triage decisions. When a new
referral document arrives, the base learner predicts the triage label.
This label provides a first pass triage of the patient, and is eventually
reviewed by a clinician, at which point the model’s prediction and
the true label are fed into the drift detector, which predicts if and
when concept drift has occurred. If concept drift is detected, the
model is retrained on the post-drift data.

There are several special requirements for drift detection in
this application. In a typical concept drift setting we may expect
a high rate of incoming data to be processed by a simple model
online. By contrast, medical referrals are relatively low volume.
Computational economy (low runtime and memory consumption)
are not essential requirements. Instead, the emphasis is on precision:
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Figure 2: Illustration of the benefit of using probabilistic pre-
dictions for concept drift detection.

not causing costly retraining unnecessarily, and recall: promptly
detecting concept drift to avoid clinical errors.

2 DETECTING DRIFT WITH CALIBRATION
We propose a novel approach to concept drift detection for this
application, called Calibrated Drift Detection Method (CDDM). Ex-
isting approaches to concept drift detectionmonitormodel accuracy,
and predict drift when accuracy declines. However, accuracy can
be quite a coarse metric. For example, if the rate of a condition
whose priority is hard to predict increases, then accuracy will de-
cline. Existing drift detectors would likely recommend retraining
the model, even though the decision boundary has not changed,
so this expensive operation will not recover accuracy. Changes in
data stream characteristics, which can be attributed to changes in
the feature statistics are called virtual drift, whereas those due to
changes in decision boundaries are called real drift.

Virtual drift will often be a problem in medical triage, as the char-
acteristics of documents will change with demographics, epidemi-
ology, medical facilities, and other factors. It is therefore important
that a drift detector is able to distinguish virtual drift from real drift.
CDDM achieves this by detecting changes in the calibration [5]
of the base learner, rather than changes in accuracy. This requires
the learner to predict probability distributions over labels, rather
than make point predictions. In the case of a neural network, the
probability distribution is the activations of the softmax layer. In
the case of a Naïve Bayes, the probability distribution corresponds
to the posterior probability of each label.

Figure 2 illustrates how probability distributions can help make
concept drift detection more precise. Figure 2a shows a model’s
conditional probabilities for each triage priority label for a referral
document. Previous similar documents have tended to be assigned a
priority of 2, so this label receives the highest conditional probabil-
ity and is the model’s prediction. However, the actual priority label
assigned by a clinician is 3, which may indicate concept drift. Figure
2b is a similar situation, except that previous similar documents
have more consistently been assigned a priority label of 2, so more
probability mass is assigned to this label. The fact that the model is
more “confident" in this incorrect prediction than in Figure 2a is
stronger evidence of drift. However, because existing drift detec-
tion algorithms only consider point predictions from models, this
information will be missed.

Let us say that a model assigns probabilities to each of 5 labels,
which in this case are triage priorities. For example, the model as-
signs probabilities (0.1, 0.4, 0.3, 0.1, 0.1) to priority levels of (1, 2, 3, 4, 5)
respectively. Let q be the maximum probability assigned to any of

the labels; in this case q = 0.4. Let y indicate whether a prediction
was correct; in this case if the correct priority level is 2 then y = 1
otherwise y = 0.

A predictor is said to be “calibrated" if events assigned probability
q do in fact obtain at a rate of q [6]. For example, if a calibrated
predictor assigns a probability 90% to 10 distinct events, then in
expectation 9 of these events should turn out to be true and 1
should not. Our null hypothesis will be that the base models are
calibrated. See [6] for discussion on adjustments which can be made
to model outputs to improve their calibration. When models are
not calibrated, we will take this as a sign of concept drift.

When a model is calibrated, we have

E [q − y] = q · (q − 1) + (1 − q) · (q − 0) = 0. (1)

CDDM stores the most recentN values ofq,y, and their correspond-
ing referral documentsx , in arrays (q1,q2, . . . ,qN ), (y1,y2, . . . ,yN ),
(x1, x2, . . . , xN ). qi is the i-th most recent q value. At each time
step, CDDM calculates the mean value of q − y for the most recent
T instances, for each T = 1, 2, . . . ,N , which we denote kT . Using
Equation 1 and Hoeffding’s inequality, we can bound the probability
of observing a mean as extreme as kT under non-drift conditions:

P

( T∑
t=1

qt − yt
T

≥ kT

)
≤ exp

(
−

2T 2k2T∑T
t=1(bt − at )

2

)
(2)

where at and bt are lower and upper bounds on qt − yt . Because
0 ≤ qt ,yt ≤ 1, we have that at = −1 and bt = 1, so the right side
of the equation is equal to

exp

(
−
2T 2k2T∑T
t=1 4

)
= exp

(
−
Tk2T
2

)
. (3)

When the P-value given in Equation 2 falls below a critical threshold,
we conclude that E[q − y] > 0 for the most recent T instances, and
the model is making incorrect predictions at a higher rate than
expected.

Similar to several other drift detectors [1], we use two critical
thresholds: αwarn , a warning threshold, and αdr if t , a drift thresh-
old. When P falls below αwarn for any T value, CDDM issues a
warning that drift may be occurring. When P falls below αwarn
for any T , CDDM signals that drift has been detected, and the re-
ferral documents since the earliest T for which P < αwarn can be
retrieved to retrain the model. We use the values αwarn = 0.05 and
αdr if t = 0.01, but to correct for multiple comparisons across N
values of T , a Bonferroni correction is applied to these thresholds.
The pseudocode for CDDM is given in Algorithm 1.

3 EXPERIMENTS
We present three sets of experiment results to evaluate CDDM.1 The
first is intended to validate that CDDM is useful for differentiating
real and virtual drift, which will be useful for triage drift detection.
The second set of experiments explores the wider applicability of
CDDM by testing it on several benchmark datasets. The third set of
experiments evaluates several drift detectors on synthetic medical
triage data.

Two common base learners in concept drift detection experi-
ments are Naïve Bayes and perceptron learners. However, Naïve
1https://github.com/lajesticvantrashell/CDDM_SIGIR2020.git.
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Algorithm 1 CDDM
Require: Warning threshold αwarn
Require: Drift threshold αdr if t
Require: Window size N

Window← []
for t = 0, 1, 2, . . . do
(q1,q2, . . . ,qn ) ←model.predict(referralt )
q ← maxi qi
labelpred ← argmaxi qi
y ← 1[labelt =labelpred ]
Window←Window ∪ (y − q)
if Window.length > N then

Window←Window[1:]
end if
for T = 1, 2, . . . ,N do

kT ←
∑T
i=1 Window[N − i]

p ← exp
(
Tk2

T
2

)
if p ≤ αdr if t /N then

status← drift
else if p ≤ αwarn/N then

status← warning
end if

end for
end for

Bayes’ are known to be poorly calibrated [6] and so do not work
well with CDDM. We therefore report on perceptron experiments,
but Naïve Bayes experiments are also provided in the supplemen-
tary material. Due to space constraints we only compare CDDM
with two other drift detectors. In a large scale evaluation of drift
detectors [1], the HDDM-A [3] and RDDM [2] algorithms obtained
the best average performance across all metrics and datasets, so
we use these as our state of the art comparisons. We use the Tor-
nado framework for implementations of detection algorithms and
benchmark dataset generators [7].

3.0.1 Real and Virtual Drift. We now present a data stream in-
tended to illustrate how concept drift is detected using calibrated
probability estimates for medical referrals triage. This data stream
embodies several kinds of drifts which may occur and for which
an error-rate based drift detector will be ill-equipped to handle. In
particular, it involves feature drift and noise which is unevenly dis-
tributed in feature space. These factors can result in false positives
and false negatives for a error-rate based drift detector.

The data stream consists of a single Bernoulli variable x , and a
binary label y. Initially, the value of x is distributed as P(x = 1) = p,
and the value of y is given by y = x . However, noise is present in
the x = 1 region of feature space, so that with probability ϵ the
label will be negated. That is,

P(y = 1|x) =

{
0 if x = 0
1 − ϵ if x = 1.

(4)

The irreducible error rate is thus pϵ . At time τ , the data stream
will drift in one of two ways. The first is a feature drift, in which
P(x = 1) becomes 1 − p. If ϵ(2 − p) > 0, then the irreducible error

0.0 0.2 0.4 0.6 0.8 1.0
p

0

50

100

%
 P

os
iti

ve

Experiment
CDDM + NB
HDDM_A_test + NB
RDDM + NB

Figure 3: Percentage of (false) positive drift detections for
the Bernoulli data stream with virtual drift.
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Figure 4: Percentage of (true) positive drift detection for the
Bernoulli data stream with real drift.

rate will increase, thereby triggering a false positive in an error-rate
based drift detector.

The second is a feature drift (with the same details as above) in
addition to a real drift so that x = 1, the correct label is now y = 0
(still with a noise rate of ϵ). In this case, if 1 < ϵ +p then the change
in irreducible error rate will decrease, resulting in a false negative
for a drift detector.

We evaluated how well drift detectors can differentiate between
these two scenarios by fixing the noise level at ϵ = 0.2, and for
given p values between 0 and 1, running 1000 time steps in the
initial concept, and then 1000 time steps in the drifted concept. This
is repeated 100 times for each value of p for both the real and virtual
drift conditions. The percentage of trials which result in a positive
drift detection for each detector are shown in Figures 3 and 4. We
see that CDDM can reliably avoid false positives from virtual drift,
unlike HDDM-A and RDDM, although this does come at the cost
of lower sensitivity to true positives.

3.0.2 Benchmark Datasets. We compare CDDM with state of the
art drift detection on standard benchmarks from the concept drift
literature. The details for each data stream can be found at [1]. We
used default parameters from Tornado [7]. For each combination of
data stream, drift detector, and base learner, 10 trials were run. Each
trial contained 80,000 time steps, with concept drifts every 20,000
timesteps. For each trial, the precision, recall, memory consumption,
runtime, and total detection delay are recorded, although due to
space constraints not all of these metrics are reported and may be
found in the supplementary material. The mean results across trials
and their standard deviations are given in Table 1.

We ran a Nemenyi post-hoc test to compare the detection meth-
ods. CDDM had a substantially longer runtime than HDDM-A and
RDDM (p <0.001). It consumed more memory than HDDM-A, but
less than RDDM (p <0.01). However, CDDM had higher precision



Table 1: Drift detector results on standard benchmarks.

Memory (bytes) Runtime (ms) Precision Recall Mean Delay (time steps)

MIXED+CDDM 15.76 (0.01) 13234.50 (163.42) 1.00 (0.00) 1.00 (0.00) 73.12 (6.13)
MIXED+RDDM 73.10 (0.00) 252.06 (14.05) 0.91 (0.12) 1.00 (0.00) 121.50 (16.82)
MIXED+HDDMA 10.49 (0.00) 383.95 (11.66) 0.91 (0.12) 1.00 (0.00) 87.58 (17.91)
SINE+CDDM 13.96 (0.00) 13216.29 (84.73) 1.00 (0.00) 1.00 (0.00) 65.25 (4.06)
SINE+RDDM 71.29 (0.00) 227.60 (0.72) 1.00 (0.00) 1.00 (0.00) 99.58 (4.10)
SINE+HDDMA 8.68 (0.00) 347.98 (13.02) 0.94 (0.09) 1.00 (0.00) 59.02 (11.98)
LED+CDDM 77.54 (0.00) 47030.06 (12875.64) 0.00 (0.00) 0.00 (0.00) 250.00 (0.00)
LED+RDDM 136.76 (0.04) 2329.73 (120.75) 0.00 (0.00) 0.00 (0.00) 250.00 (0.00)
LED+HDDMA 74.19 (0.05) 2489.91 (103.31) 0.33 (0.25) 0.37 (0.31) 226.80 (28.74)
CIRCLES+CDDM 13.93 (0.00) 57066.05 (2814.82) 0.00 (0.00) 0.00 (0.00) 250.00 (0.00)
CIRCLES+RDDM 71.26 (0.00) 424.91 (175.00) 0.04 (0.09) 0.07 (0.13) 246.03 (7.98)
CIRCLES+HDDMA 8.68 (0.00) 360.27 (87.74) 0.24 (0.07) 0.43 (0.15) 208.37 (22.72)

Table 2: Drift detection experiments on synthetic medical triage data.

Memory (bytes) Runtime (ms) Precision Recall Mean Delay (time steps)

REFERRALS+CDDM 3793.13 (0.02) 10462.15 (1766.30) 0.93 (0.14) 0.93 (0.11) 58.88 (23.46)
REFERRALS+RDDM 3850.19 (0.05) 14304.45 (5188.00) 1.00 (0.00) 0.95 (0.15) 55.73 (44.76)
REFERRALS+HDDMA 3788.70 (0.07) 12737.93 (1678.21) 0.96 (0.08) 0.97 (0.07) 18.30 (18.11)

than RDDM (p <0.05). CDDM appears competitive on a range of
benchmark datasets, although further optimisation work would be
useful.

3.0.3 Referrals Data. For privacy reasons, we evaluated the drift
detectionmethods on simulated referrals data. The synthetic dataset
is based on 10,000 radiology medical reports from the MIMIC-III
dataset [4]. We parse the document headers to extract structured
fields like gender and age, and encode the report body as a bag of
words. Stop words and words which occur fewer than 10 times are
discarded.

We simulate triage policies using decision trees which have been
trained on a randomly labelled sample of 20 documents. For each
experimental trial, we shuffle the dataset to obtain a new data
stream, and insert drift points at each 2,000 time steps by changing
the triage policy. The results are shown in Table 2.

A Nemenyi post-hoc test on these results finds CDDM was com-
petitive in runtime for this experiment, with lower runtime than
RDDM (p < 0.05). As in the previous experiment, CDDM consumed
more memory than HDDM-A, but less than RDDM (p < 0.05).
CDDM had a significantly longer detection delay than HDDM-A
(p < 0.001), but was otherwise competitive.

4 CONCLUSION AND FUTUREWORK
In this paper wemotivated the task of referrals triage drift detection,
and suggested some features of a good solution. We introduced
a novel drift detection method for this task. CDDM makes use of
calibration to differentiate between real and virtual drift, which
will be useful for any domain in which virtual drift is common.
Experiments with CDDM on synthetic data indicates it lags in
computational efficiency, although this is not essential for medical

triage drift detection. On other metrics CDDM appears competitive.
It appears to be much less prone to false positives due to feature
drift than other detectors.

For future work, we intend to develop a full solution for medical
triage concept drift detection. This will include separate detectors
for virtual and real drift detectors, and a graphical interface to
increase interpretability and facilitate a more interactive style of
triage machine learning.
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