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Abstract. Within the domain of biomedical natural language process-
ing (bioNLP), researchers have used many token features for machine
learning models. With recent progress in word embeddings algorithms,
it is no longer clear if most of these features are still useful. In this
paper we survey the features which have been used in bioNLP, and eval-
uate each feature’s utility in a sample bioNLP task: the N2C2 2018
named entity recognition challenge. The features we test include two
types of word embeddings, syntactic, lexical, and orthographic features,
character-embeddings, and clustering and distributional word represen-
tations. We find that using fastText word embeddings results in a signif-
icantly higher F1 score than using any other individual feature (0.9142
compared to 0.8750 for the next-best feature). Furthermore, we con-
ducted several experiments using combinations of features, and found
that all tested combinations attained a lower F1 score than using word
embeddings only. This indicates that supplementing word embeddings
with additional features is not beneficial, and may even be detrimental.

Keywords: natural language processing · biomedical NLP · word em-
beddings · feature importance · named entity recognition

1 Introduction

To achieve biomedical natural language processing (biomedical NLP, or bioNLP)
tasks, such as summarising clinical narratives, question answering about patient
history, and extracting relations between entities in a health records, many fea-
tures are conceivably useful3 For a given token, an algorithm might benefit from
any of the following: the syntactic properties of the token, whether the token
names a known drug or disease, the orthographic properties of the token, which
other tokens tend to co-occur with the token, and so on. At various times, bioNLP
researchers have used many features which attempted to capture this kind of in-
formation. However with recent advances in word embedding algorithms, it is
now conceivable that all previously employed features are now obsolete. Word

3 Our code is available at https://github.com/lajesticvantrashell/N2C2_2018_

track_2.

https://github.com/lajesticvantrashell/N2C2_2018_track_2
https://github.com/lajesticvantrashell/N2C2_2018_track_2
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embeddings are mappings from tokens to fixed dimensional vectors. The map-
pings should ideally reflect semantic or syntactic information about tokens, so
that the vector corresponding to “king” should be similar to that of “monarch”.
Current word embeddings can take into account semantic, syntactic, morpho-
logical [1], and even contextual information [15] about tokens, and have been
used to achieve state of the art in several tasks [15]. If it could in fact be verified
that current word embedding algorithms render other token features moot, this
would be very valuable knowledge for bioNLP researchers. It would simplify the
feature engineering task to merely finding the best word embedding.

As a first step towards investigating whether current word embedding tech-
niques obviates the use of other features, we investigate the utility of com-
mon bioNLP features in Track 2 of the 2018 National NLP Clinical Challenges
(N2C2). This is a named entity recognition (NER) task, in which entities in free
medical text relating to drugs and adverse drug events (ADEs) must be anno-
tated. An adverse drug event is defined as an “adverse outcome that occurs while
a patient is taking a drug” [5]. Because NER is one of the simplest NLP tasks,
this challenge is a natural first domain to investigate feature importance. Our
contributions are two-fold. First, we provide a survey of the main features used
in bioNLP, with implementations of each feature in our accompanying code. Sec-
ondly, we have conducted a feature importance study in which we trained and
tested a simple neural network model using each of these features individually
on the N2C2 2018 NER challenge. We found that word embeddings produced a
significantly higher precision, recall, and F1 score than any other feature (F1 of
0.9142 compared to 0.8750 for the next-best feature). We also evaluated several
sets of features, and found that supplementing word embeddings with additional
features is not beneficial.

This paper is organised as follows. Section 2 discusses related work. Section
3 gives details of our feature importance study method. Section 4 describes the
features we use in detail. Section 5 describes the results of our experiments.
Section 6 concludes this investigation.

2 Related Work

Many feature engineering or feature importance experiments have been done in
the bioNLP domain which used word embeddings. Tang et al. compared several
types of word representation features on bioNLP tasks, including Brown clusters,
word embeddings, and random indexing [18]. None of these representations was
clearly superior to the others, but the combination of all three produced the
best results. Liu et al. found that a word embedding feature could achieve better
results at drug NER than a traditional drug lexicon-based system [11]. However,
the combination of lexical and word embedding features did better than both and
achieved state of the art results. Recently, Chen et al. developed an ADE NER
system which benefited from lexical features [4]. Much of this research suggests
that although word embeddings are useful features, the combination of word
embeddings with other conventional features tends to produce the best results.
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However, word embedding algorithms have improved significantly since these
previous studies were conducted, and it is worth re-examining their conclusions.

Some work has also been done on the best approach to employing word
embeddings for bioNLP tasks. Muneeb et al. evaluated different word embedding
algorithms on semantic similarity and relatedness tasks in a biomedical context
[13], finding that the skipgram implementation of the word2vec was the most
accurate. Wang et al. [20] and Wu et al. [23] both compared the performance
of word embeddings trained on biomedical corpora versus general corpora on
downstream bioNLP tasks. In general, word embeddings trained on biomedical
corpora outperformed those trained on general corpora.

It is worth noting that in most actual biomedical NLP applications rule-
based systems still dominate [21]. However, given the significant role of neural
networks and word embeddings in state-of-the-art natural language processing
[12][15], this seems likely to change in the future. We therefore focus on neural
network models.

3 Feature Importance Experiment Methodology

Our feature importance study began by dividing the official N2C2 2018 Track
2 training dataset into a training/validation/development partition, which was
fixed throughout the study. Then, for each feature we describe in Section 4, we
trained a simple neural network model on the training set using only that feature,
and report the lenient precision, recall, and micro F1 score of the model on the
development set. We also performed a single evaluation of our best feature set
on the official N2C2 test set, so that our results could be compared to the official
competition outcomes.

3.1 Model Architecture

Because we were primarily interested in studying feature importance, and not
creating the most accurate model possible, we elected to use a very simple neural
network model for our experiments. However, preliminary experiments with more
complex neural network architectures showed no discernible difference in F1

score. The text was processed in windows of tokens. The features for each token
were generated and then concatenated into a single vector per token. These
vectors were then fed into a bidirectional LSTM (bi-LSTM). A dense layer with
softmax activation then predicted token labels from the bi-LSTM outputs. This
simple architecture is illustrated in Figure 1 and was implemented in Keras with
Tensorflow backend.

A dropout rate of 0.3 was used between layers. In each experiment the model
was trained using the Nesterov ADAM optimiser with a batch size of 128. The
models were trained for 40 epochs, using early stopping with a patience of 5
epochs. The classification error was given by categorical cross entropy.

We did not perform a formal hyperparameter optimisation for this archi-
tecture. However, preliminary testing indicated that the following were sensible
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options: a token window size of 128, and a latent dimension for the bi-LSTM of
128. At training time the token window had a slide of 32, at test time it was
equal to the window size.

Fig. 1. Our architecture.

Table 1. Effect of training cor-
pora on fastText.
Corpus Prec. Recall F1

Wikipedia 0.9200 0.8472 0.8821
Pubmed 0.9085 0.8681 0.8878
Wiki-news 0.9354 0.8467 0.8889
PMC 0.9312 0.8742 0.9018
MIMIC 0.9353 0.8764 0.9049
Combined 0.9353 0.8941 0.9142

Table 2. Effect of cluster num-
ber on Brown clustering.
#Clusters Prec. Recall F1

100 0.8933 0.7119 0.7923
200 0.8883 0.7772 0.8290
500 0.9079 0.7824 0.8405
1000 0.9086 0.8231 0.8638

3.2 Dataset

Our models were evaluated using a dataset of nearly 505 clinical narratives
provided by Track 2 of the 2018 National NLP Clinical Challenges (N2C2)4 .
The N2C2 dataset is a drawn from the MIMIC-III (Medical Information Mart
for Intensive Care III) database [7], with annotations added by domain ex-
perts. The annotations consist of entity tags indicating the presence of drug
and ADE information. Specifically, the named entities for the N2C2 challenge
are “Drug”, “Reason”, “Strength”, “Frequency”, “ADE”, “Dosage”, “Duration”,
“Form” and “Route”.

We used BILOU segment representation for multi-token entities. Under BILOU,
for each named entity which spans multiple tokens, the beginning token is la-
belled with a “B”, the last token with an “L”, and those tokens inside the named
entity (i.e., between the beginning and last token) with an “I”. Tokens which
are outside of all named entities are labelled with an “O”, and named entities
consisting of a single (unique) token are labelled “U”. So for example, we get
the following segment representation: “treated/O with/O vanc/U-Drug for/O
the/O septic/B-Reason left/I-Reason knee/L-Reason”.

4 https://portal.dbmi.hms.harvard.edu/projects/n2c2-t2/

https://portal.dbmi.hms.harvard.edu/projects/n2c2-t2/
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For training certain features we also made use of the following biomedical
corpora. The MIMIC III dataset [7] contains de-identified information on 40,000
patient encounters in a critical care unit. We extracted the the patient sum-
maries and used these to pre-train some of our features. The PubMed Central
(PMC) dataset is a repository of biomedical and life sciences journal litera-
ture. We downloaded a portion of the articles from the repository for Dec 2018
which contained around 200K articles. The Pubmed dataset is a free search en-
gine primarily accessing the MEDLINE bibliographic database of life sciences
and biomedical information. We extracted over 200K articles and abstracts in a
snapshot we took by searching for relevant clinical articles or abstracts.

3.3 Evaluation

We evaluated the performance of our models using the official N2C2 track 2
evaluation script. The primary evaluation metric of the competition is lenient
micro F1 (henceforth simply “F1”), although we also report the precision and
recall. “Lenient” here meaning that any overlap in the predicted and true span
of a named entity is counted as a correct prediction.

The data is split into 303 official training documents and 202 official test
documents. Because we tested several models, to avoid overfitting to the test
data and positively biasing our F1 score, we further subdivided the training
data into training, validation, and development dataset, with an 8/1/1 split.
The validation set is used for early stopping, and the development set is used for
F1 score evaluation. As a final step in our experiments, we evaluated our most
accurate model (according to the development dataset) on the official test set.

4 Features

In this section we list all the features we experimented with in our experiments,
aggregated from the literatures on biomedical NLP [18][11][10][3], and general
NER [14]. First we considered word representation (WR) features, which can
be categorised as word embeddings, cluster-based representations, and distribu-
tional representations. We employed two word embedding algorithms: fastText
[1] and ELMo [15]. We used Brown clustering as a cluster-based WR, and random
indexes as a distribution-based WR. In addition to WRs, we also experimented
with character-embedding features, orthographic features, lexical features, and
syntactic features.

4.1 FastText

FastText is a word embedding algorithm based on the skipgram model, primarily
distinguished from preceding word embedding algorithms in two ways: first, it’s
computationally much more efficient, and secondly, it generates embeddings at
the character n-gram model, as well as at the token level. This allows it to model
word morphology, and determine embeddings for tokens which did not appear
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in the training data. For our experiments, we downloaded two pre-trained fast-
Text embeddings provided by the original authors. Both are trained on general
corpora: the first on Wikipedia5, and the second on both Wikipedia and Google
News6. We also trained new embeddings on the biomedical corpora MIMIC-III,
Pubmed, PMC, and the combination of the three. The results of using fastText
embeddings trained on each of these corpora are given in Table 1.

4.2 ELMo

Embeddings from Language Models (ELMo) is a word embedding algorithm
which recently debuted by significantly improving the state of the art in six
difficult NLP tasks [15]. ELMo is a deep bidirectional language model (biLM),
meaning it is composed of several bi-LSTMs stacked on top of one another (imag-
ine Figure 1 but with the bi-LSTM layer repeated several times). The final word
embedding for a token is a learned linear combination of all the LSTM states in
a vertical stack. This approach allows ELMo to resolve polysemy - words with
multiple meanings - by taking context into account. Due to resource constraints,
we did not fine tune ELMo to our task, and simply used out-of-the-box ELMo
with TensorFlow Hub7 to generate 1024-dimensional word embeddings for each
token.

4.3 Brown Clusters

Brown hierarchical word clustering is an algorithm designed to allocate classes
to tokens, such that the average mutual information between adjacent classes
in text is maximised [2]. Because the clustering is hierarchical, clusters may be
represented by binary strings denoting the binary tree traversal from the root
to the leaf representing the cluster. This is illustrated in Figure 2, in which we
can see that “with” is more closely related to “between” than to “in”.

We ran an implementation of Brown clustering [9] over the pre-tokenised
MIMIC-III corpus. The number of clusters is a hyper-parameter to be tuned.
We considered four different numbers of clusters, and the results of each clus-
ter number are given in Table 2. 1000 clusters were best in our experiments.
Examples of the resulting clusters are shown in Table 4. The cluster feature is
zero-padded to a fixed length.

4.4 Random Indexing

Random indexing is a distributional word representation method, so tokens
which tend to co-occur in documents will have similar representations. Many
approaches to distributional word representation - such as latent semantic anal-
ysis - rely on a costly dimension reduction step, which must be repeated every

5 https://fasttext.cc/docs/en/pretrained-vectors.html
6 https://fasttext.cc/docs/en/english-vectors.html
7 https://tfhub.dev/google/elmo/1

https://fasttext.cc/docs/en/pretrained-vectors.html
https://fasttext.cc/docs/en/english-vectors.html
https://tfhub.dev/google/elmo/1
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Fig. 2. Brown clusters illustration [18].

Table 3. Example of syntactic tags
produced by the Genia Tagger.
tokens POS chunk

The Determiner. Noun phrase
patient Noun, singular. Noun phrase
was Verb, past tense. Verb phrase
tested Verb, past part. Verb phrase

Table 4. Illustration of several features with the text “2.50 mg - Lasix”.
tokens jochem clusters shape short shape len title upper lower numeric symbol

2.50 False 11110101 0!00 0!0 4 False 0.00 0.00 0.75 0.25
mg True 1111011 xx x 2 False 0.00 1.00 0.00 0.00
- False 11110111101 ! ! 1 False 0.00 0.00 0.00 1.00
Lasix True 1111010000111 Xxxxx Xx 5 True 0.20 0.80 0.00 0.00

time the representation is updated with a new document. Random indexing gets
around this problem using the fact that random pairs of sparse, high-dimensional
vectors are on average almost orthogonal. This allows a dimension-reduction
computation to be approximated by accumulating such vectors onto token rep-
resentations.

In particular, we adopted the random indexing method described in [16].
Each document Dj was initially assigned an n-dimensional index vector rj . Index
vectors are high dimensional and most elements are zero, with a few elements
being +1 or -1. Each element of the vector was given by

rj,i =
√
s


−1 with probability 1

2s

0 with probability 1− 1
s

1 with probability 1
2s

(1)

The next step was to generate an n-dimensional context vector vk for each
token wk in the vocabulary. Initially, vk = 0, and then for each occurrence of
wk in Dj , rj was added to vk. In this case we chose n = 100, and s =

√
n = 10.

These values are indicated to be appropriate in [16]. We trained our random
index representation on MIMIC-III.

4.5 Character Embeddings

To capture morphological information about tokens, we used a character-level
token representation. Specifically, we used a neural network architecture called
CharWNN, which was introduced in [17].CharWNN produces a representation
of each token by convolving over a sequence of character embeddings, and then
taking the maximum value at each index of the resulting vectors. We omit the
mathematical details here, but we use the same architecture and hyperparame-
ters as [17].
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4.6 Lexical Features

Following [11], we checked each token against three popular drug lexica: drugs@FDA8,
DrugBank (version 5.1.2, released 2018-12-20) [22], and Jochem (Erasmus on-
tollogy) [6]. Each lexicon has a corresponding binary feature, where a value of
1 indicates that the token is present in the lexicon, and 0 indicates it is not.
Examples of this token can be seen in Table 4. Each of the entries in these lex-
ica were preprocessed as follows. The entries were tokenised using Spacy, and
then each token was lower-cased and stemmed. Any tokens with no alphabetic
characters were removed. With this process, 6799 tokens were extracted from
drugs@FDA, 14317 tokens were extracted from the ‘drug name’ and ‘active in-
gredients’ columns of the Drugbank database, and 941334 tokens were extracted
from Jochem. In addition to a binary feature for each lexicon, we also considered
the concatenation of these features as a 3-dimensional feature which we called
“all lexica”.

4.7 Orthographic Features

We used eight orthographic features to encode information about the kinds of
characters present in the word. These features are illustrated in Table 4. Firstly,
we used a simple orthography feature which gave the proportion of characters
in the token which were numeric, uppercase alphabetic, lowercase alphabetic,
and symbols, plus a Boolean of whether the token was in title case. We can
get a more fine grained picture of the token’s orthography by also considering
the ordering of character types. This was achieved with word shapes. To obtain
the word shape of a token, all uppercase letters were substituted with “X”, all
lowercase letters were substituted with “x”, all numerals were substituted with
“0”, all symbols were substituted with “!”, and all whitespace characters were
substituted with “”. In addition to the word shapes, short shapes are another
feature which summarise the order in which types of characters appear in the
token. These were produced by removing consecutive duplicates of the same
character type from the word shape. Because there are an unlimited number
of possible word shapes and short shapes, all but the 99 most common shapes
were replaced with the empty shape “”, so that the shape can be encoded in a
100-dimensional one-hot vector.

4.8 Syntactic Features

For syntactic features we used the Genia toolkit9 to generate part of speech
(POS) and chunk tags for each token. Examples of these features are given in
Table 3. The Genia toolkit is trained on biomedical texts and has reported high
accuracy on several bioNLP tasks [19]. The POS tags used by the Genia toolkit

8 https://www.fda.gov/drugs/drug-approvals-and-databases/

drugsfda-data-files
9 http://www.nactem.ac.uk/GENIA/tagger/

https://www.fda.gov/drugs/drug-approvals-and-databases/drugsfda-data-files
https://www.fda.gov/drugs/drug-approvals-and-databases/drugsfda-data-files
http://www.nactem.ac.uk/GENIA/tagger/
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are a variant of the Penn Treebank tags, including 38 POS tags, and 9 other tags
for punctuation and symbols [8]. The chunking tags indicate where in a syntactic
chunk a token resides. These tags combine BIO segment representation (which
is the same as BILOU representation, but with B in place of U, and I in place of
L), with 28 chunk-type labels. Because the range of possible tags for POS and
chunks is relatively small, the tags were simply one-hot encoded.

4.9 Features Not Investigated

In our literature review we encountered several features which we did not in-
vestigate - either because they did not seem important enough, or because we
could not figure out how to implement them with our architecture. We did not
explicitly include any character n-grams, such as suffixes or prefixes. However,
the character embedding should in principle capture the same information as
character n-grams. We did not use a lexicon of cues denoting contexts in which
entities are likely to occur, such as “medication:” indicating that the following
token is likely to be a drug. Finally, we did not perform any fuzzy matching with
lexica, and we did not use phrase length.

5 Feature Importance Study Results

For each of the individual features described above, we evaluated model accu-
racy using only that feature (using the predetermined train/val/dev datasets
described in Section 3). The results are given in Table 5. The two word embed-
ding features - fastText and ELMo - achieved the two highest F1 scores. The
best word embedding feature (fastText trained on combined corpus, 0.9142)
is significantly better than the highest non-word embedding feature (character
embeddings, 0.8750), and even the worst character embedding feature (fastText
trained on Wikipedia, 0.8821) is still better than any non-word embedding fea-
ture. These and similar observations suggest that the different types of features
can be ranked as followed: word embbeddings are the strongest features, followed
by other word representations, orthographic features and POS tags come next,
and lexical features and chunk tags are the weakest features (although lexical
features also have the smallest domains). Drugbank in particular produced a
remarkably low F1 score.

Due to resource constraints we were not able to run a feature selection algo-
rithm over the full set of features. However, we did evaluate the model when the
full set of features are used, when only the top-5 most successful features were
used, and when the top-2 features were used. We did the latter in two different
ways: first, we considered fastText and ELMo as different features, and so used
both of them in the top-2 experiment. Second, we considered fastText and ELMo
as variations of a “word embedding” feature, and so used only fastText, plus the
best non-word embedding feature: character embeddings. Every combination of
features resulted in a lower precision, recall, and F1 score than fastText (com-
bined corpus) by itself. This indicates that not only are word embeddings the
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most useful feature for this task, but also that supplementing word embeddings
with other features is not useful, and is perhaps even detrimental.

To ground our results in the official N2C2 competition outcomes, we also
tested our best feature set on the official competition test data. For this final
experiment, we kept the previous window size of 128, but reduced the window
slide to 16. This is effectively a data augmentation technique which increases
the size of the training data, thereby making the final model more accurate,
but doubling the memory requirements and training time. For this experiment,
the development dataset was added to the training dataset, but otherwise all
experimental details were kept the same. The best feature set on the validation
set was fastText (combined corpus) only. The final F1 score achieved with this
method was 0.9240. For comparison, the state of the art in this task is 0.9418.

Table 5. Performance of models using subsets of the features. The domains of each
of each feature are also included. Binary features are denoted Z2, n-dimensional real-
valued vector features are denoted Rn, one-hot encoded features with n possible values
are denoted Zn.

Feature Domain Precision Recall F1

FastText (Combined) R100 0.9353 0.8941 0.9142
ELMo R1024 0.9190 0.8610 0.8890
Character Embedding R50 0.9162 0.8374 0.8750
Brown Clusters Z15

2 0.9086 0.8231 0.8638
Random Index R100 0.8551 0.7465 0.7971
Orthography R5 × Z2 0.9069 0.6006 0.7226
POS Z47 0.8699 0.5878 0.7016
Word shape Z100 0.8959 0.5664 0.6941
Short shape Z100 0.8588 0.5438 0.6660
Length Z 0.8524 0.5249 0.6497
All lexica Z3

2 0.8286 0.5166 0.6364
Drugs@FDA Z2 0.7609 0.4173 0.5390
Chunk Z27 0.8348 0.3798 0.5220
Jochem Z2 0.8503 0.3572 0.5030
Drugbank Z2 0.5672 0.0425 0.0791

FastText+CE R350 0.9330 0.8855 0.9086
FastText+ELMo R1324 0.9329 0.8777 0.9044
Top-5 R1489 0.9192 0.8833 0.9009
All features R1873 0.9186 0.8848 0.9014

FastText (test set) R300 0.9476 0.9016 0.9240

6 Conclusion

In accord with past research [20][23], our experiments indicated that word em-
beddings trained on biomedical corpera are more useful for bioNLP tasks than
those trained on general corpera; as is visible in Table 1. Unlike past research,
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which found that conjunctions of word embeddings with other word represen-
tations were the best feature sets for BioNLP tasks [18][11][4], our experiments
indicated that best results are obtained by using word embeddings only. This
discrepancy can be accounted for by the fact that significant progress has been
made in word embedding algorithms since these early studies were conducted.
These results lend support to the hypothesis that by using state-of-the-art word
embedding algorithms, other features which have traditionally been used for
bioNLP - such as explicitly syntactic, morphological, and contextual features -
can be made redundant. This greatly simplifies the task of bioNLP practitioners,
whose feature engineering task is then simplified to merely finding a good word
embedding.

There are several caveats to this conclusion. Our experiments only investi-
gated the effect of using different features for a simple neural network model with
a single architecture and hyperparameters. Furthermore, we only evaluated the
model on a single NER bioNLP task. Further research is therefore required to
validate our findings in the broader bioNLP context. On the other hand, our ex-
perimental procedure is quite representative of a typical bioNLP scenario: NER
is a standard NLP benchmark, and simple recurrent networks - especially biL-
STMs - are a popular model choice for natural language problems. Furthermore,
in our preliminary experiments we also tested a more complex neural network
model, and found very similar results to those reported here.
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