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Abstract

In many machine learning applications, the relationship being modelled may change over

time, a phenomenon called concept drift. Most existing approaches to handling concept

drift have assumed an artificially narrow specification of the problem. In this thesis we

explore some new approaches to concept drift which introduce several new algorithms

to help bridge academic concept drift research and real data science applications. As a

motivating example for our investigation, we consider a medical clinic where a decision

support system is helping clinicians triage patients referred by GPs. As the triage policy

evolves, the decision support system should be able to detect that its model has become

outdated, and signal to a human expert that it requires retraining.

We first introduce the multiple drift detector (MDD) framework, in which a detector

for several di↵erent types of concept drift is constructed out of a single “narrow” drift

detector. This allows for a more complete and interpretable monitoring of concept drift.

Changes in the accuracy, precision, recall, label distribution, or instance distribution can

be detected, whereas typically only changes in accuracy are detected by existing drift

detectors. We also present a graphical interface for MDD to assist understanding of how

a data stream is evolving.

Next, we introduce the calibrated drift detection method (CDDM), an algorithm which

makes use of probabilistic predictions of models to detect increases in the reducible error,

and not the irreducible error, of a model. Both of these are detected by conventional drift

detectors, which can result in unnecessary and expensive model retraining.

Next, we present Bayesian drift detection method (BDDM), an algorithm which com-

putes exact posterior probability distributions over possible drift locations and over the

error rate of the model. This allows decisions about whether to retrain a model to be made

on a rational, expected utility basis. We also introduce Bayes with adaptive forgetfulness

(BWAF), which is a heuristic approximation of BDDM.

Finally, we experimentally validate our novel drift detection methods. We demonstrate

the circumstances under which CDDM is useful. We also demonstrate that BWAF is

competitive on most metrics on standard benchmarks, and as well as a synthetic medical

triage data stream.
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1
Introduction

In a machine learning application, a change in the data distribution is known as concept

drift. Adapting to concept drift is one of the core problems in data stream learning

[41]. Over the last few decades, considerable research has been dedicated the to detection

and adaptation to concept drift in machine learning [24][10]. Because concept drift is

such a broad category of phenomenon, this research has necessarily focused on a specific

formulation of concept drift. The most common formulation is roughly

At regular time intervals, new instances become available. A model must

predict the label corresponding to each new instance. Immediately after the

prediction has been made the true label becomes available. The learner then

incrementally updates the model based on the new instance-label pair in an

online manner.

We will call this the standard formulation of the concept drift problem, or simply

the standard formulation.

The standard formulation is attractive from an academic perspective. It is simple and

covers a wide class of problems. It is easily rendered in synthetic benchmark datasets

against which progress in the field can be measured. It can be naturally expressed in

formal mathematics, so is easily tractable to theoretical study.

There are broadly two approaches to handling concept drift. “Blind” approaches do

not explicitly model drift, instead allowing the model to gradually adapt to the new en-

vironment. “Informed” approaches, instead employ drift detectors to explicitly detect

1
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Model Detector

retrain

data error rate

drift detected

Figure 1.1: Informed approach to concept drift adaptation.

when concept drift has occurred so that the model can be retrained [24]. Blind approaches

are often inadequate, as it can take too long for the model to adapt to the new environ-

ment. Informed approaches work roughly as follows:

The drift detector monitors some performance metrics of the model. When it

detects a degradation in performance, it infers that the model no longer reflects

the current data distribution, and signals that concept drift has occurred. It

then retrains the model using data which arrived after the drift was detected.

We will call this the standard approach to concept drift adaptation, and it is

illustrated in Figure 1.1.

1.1 Motivation

In many applications the standard formulation of the concept drift problem diverges from

reality in important ways. In this thesis we explore some algorithms which help bridge

the gap between academic concept drift detection and practical data science applications.

We are motivated by a concrete problem from medical data science. We will return to

this motivating example for illustration throughout the thesis. The problem is as follows.

When a patient is referred to a medical facility, the referral is documented

with free text and structured data, containing such information as condition,

comorbidities, and demographics. From this data a clinician will make a

decision about how urgently the patient needs to be addressed, and assign

the patient a triage priority label. Some examples of triaging manuals are

publicly available [12][55][3].

Referral documents are often electronic, reflecting a broad trend of medi-

cal facilities switching from paper documents to electronic health records

(EHR) [34]. These electronic documents present an opportunity [67]: su-

pervised learning can be used to train a model which predicts triage labels
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for referral documents. This model can then be incorporated into a decision

support system to help clinicians make more e�cient and systematic triage

decisions.

An obvious benefit of such a support system is helping timely triaging of

referrals. Automatic support system triage can provide a first pass on referrals,

which can then be manually reviewed by clinicians. Another area in which this

decision support system is expected to benefit public health is by countering

potential bias in the healthcare system [1].

Sta↵, resources, policy, and medical best practices evolve over time, and the

decision support system must be able to detect and adapt to these changes.

For instance, suppose a condition is discovered to be particularly dangerous

for some demographic. Clinicians will likely increase the average priority of

patients with the condition in this demographic. A decision support system

must be able to promptly detect that such a change has occurred, and trigger

appropriate actions for the model to be corrected. That is, a decision support

system must be sensitive to concept drift.

Within the medical context, a high degree of reliability is required. When

concept drift is detected, a human expert must oversee and assist in the re-

training of the model, as shown in Figure 1.2. When a GP makes a referral,

the electronic referral document is passed to the model, a clinician, and a

drift detector. The model predicts the triage label of the referral, and this

prediction is passed to both the clinician, for decision support, and the drift

detector. When the clinician decides on an “o�cial” triage label, this is also

sent to the drift detector. The detector monitors the incoming referral docu-

ments, predictions, and labels for signs of concept drift. If drift is detected,

a data scientist is alerted. The data scientist inspects the output of the drift

detector, and the distribution of the data stream, and decides if the model is

still fit for purpose. If not, the data scientist may decide to retrain the model,

or recall the model if its performance cannot be recovered to an acceptable

level.

If the model is to be retrained, the data scientist must decide what data can

be included in the new training set. For example, in the previous scenario,

the model should be retrained on the full corpus of data, minus the referral

documents of patients from the demographic group with the condition from

before the priority change. The drift detector should help the data scientist

figure out which data to use in retraining.

This setting diverges from the standard concept drift problem formulation in that
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Figure 1.2: The proposed method for handling concept drift in GP referrals triage.

there may be an arbitrarily long delays between new instances arriving and correct labels

becoming available. Furthermore, the labels may become available in a di↵erent order to

instances.

Also, unlike in the standard approach where the detector automatically retrains the

model when drift is detected, in the GP referrals context, a human in the loop oversees

and assists in model retraining.

How should a concept drift detector be designed to meet these challenges?
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1.2 Problem Statement

To assist a human expert in making e↵ectively adapting a model to concept drift, we

would like to answer the following questions:

1. If there is a delay between having access to new instances and their corresponding

labels, is it possible to get early warnings that the data distribution has changed so

that the model is no longer fit for purpose?

2. Sometimes model performance will degrade irreducibly. That is, the prediction task

has become more di�cult and retraining the model will not be useful. Can we

di↵erentiate between reducible and irreducible error, so that the human expert can

evaluate whether a model performance can be recovered after concept drift?

3. Given that it is not possible to know exactly when concept drift occurred or how

severe it is, can we compute probability distributions over times when drift may

have occurred, or over how much a model’s performance has degraded due to concept

drift? This would allow the expert to make retraining decisions informed by expected

utility.

1.3 Objectives

The aims of our research are:

1. To develop a system which can provide early warnings of concept drift based on

instance values when labels have not yet become available.

2. To develop drift detection algorithms which only detects reducible degradation in

performance.

3. To develop a drift detection method which computes probability distributions for

drift timing and model degradation.

1.4 Contributions

The main contributions of our work are:

1. A framework for providing early warnings that a model requires retraining or recall,

the multiple drift detector (MDD). MDD monitors the instance distribution, the

label distribution, and model performance metrics for indicators of concept drift.

We also present a graphical interface for visualising the history of the status of

MDD.
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Figure 1.3: Overview of the topics covered in this thesis.

2. A drift detector which only detects reducible performance degradation: the cali-

brated drift detection method (CDDM).

3. A drift detection method which computes which computes probability distribu-

tions for drift timing and model degradation, the Bayesian drift detection method

(BDDM). Additionally, we introduce beta with adaptive forgetfulness (BWAF), an

e�cient heuristic approximation of BDDM.

1.5 Overview of Research

The topics discussed in this thesis are illustrated in Figure 1.3. To understand how our

contributions would assist the human expert in adapting the decision support system of

our motivating example to concept drift, consider Figure 1.4.

If the distribution of instances changes, MDD will provide an early warning that

“feature drift” has occurred. The expert inspects the distributional change using the

MDD graphical interface, and decides whether the instance distribution has changed

su�ciently that the model is no longer fit for purpose. If the model is not fit for purpose,

then it is recalled from the decision support system, so that it is not contributing clinically

harmful predictions. Otherwise, no action is required.

If the relationship between instances and labels changes (i.e., if the triaging rules

change), then MDD will warn that concept drift has occurred. At this point, the ex-

pert can consult the BDDM for a probability distribution over performance metrics, to

determine if the model is still fit for purpose. If not, then the model requires retraining.

If the model does require retraining, then the expert can consult CDDM for whether

the degradation is reducible or irreducible. If the change is irreducible, then by definition,

model retraining will not recover model performance and the model must be recalled from

the decision support system. If the degradation is reducible, then the expert can again



1.6 Structure of this Thesis 7

Real drift

Fit for
purpose

Is error
reducible?

Feature
drift

Fit for
purpose?

RecallNo action Retrain

noyes

no

yes

yesno

Figure 1.4: The decision making of the human expert.

consult BDDM for a probability distribution over drift timing. With this information,

the expert can determine a suitable data set to retrain the model. If the retrained model

performs adequately, then it can re-deployed in the decision support system.

1.6 Structure of this Thesis

This thesis is divided into the following chapters.

• Chapter 2 provides background on machine learning and data streams, and surveys

related work on concept drift detection.

• Chapter 3 introduces multiple drift detector (MDD), a framework for providing

early warnings that a model requires retraining or recall.

• Chapter 4 introduces calibrated drift detection method (CDDM), a drift detector

which only detects reducible performance degradation.

• Chapter 5 introduces Bayesian drift detection method (BDDM), a method for ex-

actly calculating posterior probabilities of drift timing and performance degradation.

We also introduce beta with adaptive forgetfulness (BWAF), an e�cient heuristic

approximation of BDDM.
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• Chapter 6 describes experiments in which we validate our novel drift detection

methods. These involve a Bernoulli data stream, a battery of benchmark data

streams, and a synthetic GP referrals triage data stream.

• Chapter 7 concludes this thesis by summarising the key points and discussing di-

rections for future research.



2
Background

In this chapter we provide background and related work for this thesis. Section 2.1 intro-

duces the setting of this work in machine learning and data streams, including notation

and definitions. Section 2.2 discusses the related work on concept drift. Section 2.3

summarises the related work.

2.1 Setting

In this section we outline the setting of this thesis. Specifically, we provide the definitions

and notation which will be used to describe machine learning and data streams.

A label is a random variable to be predicted by the machine learning model, denoted

y 2 dom(y). In general, a label may be (non-exhaustively) binary, numeric, or categorical.

However, in this thesis we will only be concerned with binary and categorical labels.1

A binary label may only take the values 0 and 1. We will denote binary labels with

y. Because this is also the symbol for a generic label, we will explicitly note when a label

is binary. A multiclass label may take on any of n values, dom(y) = {c1, c2, . . . , cn}.
An instance is a vector concatenation of one or more variables called features, and

is denoted x 2 dom(x). Features may be (non-exhaustively) binary, numeric, categorical,

or free text, and an instance may have any combination of feature types. The n-th feature

1
An astute reader will note that we equivocate between y being a random variable and y being a

specific value of that variable, and similarly with x, q, z, etc. This is to simplify notation.

9
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of an instance is denoted x
(n).

A concept is a joint probability of instances and labels:

Pr(x, y). (2.1)

It is often convenient to express this in terms of a “true” relationship between instances

and labels, plus some amount of noise, as in:

y = f(x) + ✏(x) (2.2)

where f is the relationship, and ✏ is noise random variable which may or may not vary

with x.

The marginal probabilities of labels and instances are called the label distribution

and the instance distribution, and denoted

P (y) and P (x). (2.3)

A learner is an algorithm designed to infer from a set of instance label pairs a model

which approximates the relationship between instances and labels. The output of a model

is called a prediction and is denoted ŷ.

There are two kinds of predictions we are concerned with. The first is a point predic-

tion, in which the model simply outputs the prediction ŷ. The second is a probabilistic

prediction, in which the model outputs a probability distribution over possible labels.

Due to noise, stochasticity, or the limited inferential capabilities of the learner, there

is some probability that the model will make the wrong prediction. We thus denote

q = Pr(y = ŷ) (2.4)

as the reliability of the model, or the probability that the model will make the correct

prediction, for the given instance.

For a model which makes probabilistic predictions, the confidence is the probability

assigned by the model to its predicted label, denoted

q̂ = P̂r(y = ŷ). (2.5)

The residual of a prediction is a metric of the disparity between predictions and labels.

For our purposes, it is given by

res = 1[y = ŷ] =

8
<

:
1 if y = ŷ

0 if y 6= ŷ.

. (2.6)
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A time series is a sequence of values which become successively available as time

progresses. We denote these as

Z = z0, z1, z2, . . . (2.7)

A Bernoulli time series consists of samples of a random variable where:

zi =

8
<

:
1 with probability p

0 with probability 1� p

(2.8)

where p is the rate of the series. The rate of the residual series is called the error rate

of the model.

The times at which each value in the time series becomes available are denoted by

⌧0, ⌧1, ⌧2, . . . (2.9)

If the di↵erences in time between all instances are equal, or formally

⌧i+1 � ⌧i = c (2.10)

for all i 2 N and some constant c, then the time series is an evenly spaced time series.

Otherwise it is an unevenly spaced time series.

An example of an evenly spaced time series is hourly measurements of air quality [33].

An example of an unevenly spaced time series is our motivating example of GP referrals

triage, in which new referral documents or clinician labels may become available at any

time.

Some specific time series we are interested in are instance series or feature series,

the label series, the prediction series, and the residual series, which are denoted,

respectively,

X = x0, x1, x2 . . . (2.11)

Y = y0, y1, y2 . . . (2.12)

Ŷ = ŷ0, ŷ1, ŷ2 . . . (2.13)

RES = res0, res1, res2 . . . (2.14)

An instance time series and a label time series together are called a data stream. A

drift is a change in the distribution of a series

Pr
t
(z) 6= Pr

t+1
(z) (2.15)

where Prt(z) is the distribution of z at time t. The point at which a drift occurs is called
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a drift point or drift location. In Equation 2.15, the drift point is t+ 1.

Concept drift is any change in the joint distribution of instances and labels.

Pr
t
(x, y) 6= Pr

t+1
(x, y) (2.16)

There are several sub-types of concept drift. Note that there are many variations in the

terminology used to describe concept drift [43][63], so the definitions provided here are

not universal. Feature drift, also known as and virtual drift or instance drift, is a

change in the distribution of feature values.

Pr
t
(x) 6= Pr

t+1
(x) (2.17)

Label drift is a change in the distribution of label values.

Pr
t
(y) 6= Pr

t+1
(y) (2.18)

Real drift is a change in the distribution of labels conditional on instances. These are

the most consequential type of concept drift as they can require a change in the decision

boundary of the model.

Pr
t
(y|x) 6= Pr

t+1
(y|x) (2.19)

These types of concept drift are not mutually exclusive, and in fact will often occur

together.

We further di↵erentiate feature drift into on-manifold and o↵-manifold feature

drift. In on-manifold feature drift, the relative probability of instance values increase or

decrease, but the set of possible instance values remains the same. In o↵-manifold feature

drift, the set of possible instances changes. For example, in the domain of classifying

emails into spam and non-spam, if a new type of “Nigerian prince” spam email begins

circulating, then this is o↵-manifold feature drift. Conversely, if the relative frequency of

“Nigerian prince” spam email increases from one in one thousand to one in one hundred,

then this is on-manifold drift.

A rich taxonomy of di↵erent types of drift has been explored, as illustrated in Fig-

ure 2.1. For our purposes, we need only di↵erentiate between abrupt drift, where the

stream distribution changes from one stable distribution to another stable distribution

over a short period of time, and gradual drift, where the data stream goes through

many “intermediate distributions” over a long period of time before stabilising on a new

distribution.
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Figure 2.1: Taxonomy of drift types. Solid lines denote mutually exclusive subcategories. Dashed lines

denote non-mutually exclusive subcategories. Illustration originally appeared in Webb et

al. [63].

2.2 Related Work

There are broadly two approaches to handling concept drift. Blind approaches do not

explicitly model drift, instead allowing the model to gradually adapt to the new environ-

ment. Informed approaches, instead employ drift detectors to explicitly detect when

concept drift has occurred so that the model can be retrained on data from the drift point

onward [24].

A drift detector is an algorithm which predicts whether drift has occurred for a given

data stream

D(Z) ⇡

8
<

:
1 if drift has occurred on Z

0 otherwise
(2.20)

The following are desirable properties for a drift detector:

• Adaptiveness The ability to detect when concept drift has occurred in a short

span of time so that model retraining can commence quickly.

• Accuracy The system should have a low rate of false-positives and false negatives,

so that unnecessary training isn’t invoked, and necessary training isn’t neglected.

• Robustness The system should be robust to noise.

We now present a survey of the field of concept drift detection research.
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2.2.1 Early Algorithms

Page [47] introduced the field of change detection, the parent field of concept drift detec-

tion. Page proposed the Page-Hinkley Test (PHT), also known as CUSUM algorithm, in

the context of industrial quality control. We imagine testing fixed-size samples of some

product from various batches. The number of faulty products from batch i is given by xi.

We would like to raise the alarm that the industrial process has gone awry whenever the

following condition is met:

8
>>>>>><

>>>>>>:

xn > 1 or

xn + xn�1 > 2 or
...
Pk

i=0 xn�i > k + 1 for some k

(2.21)

This is equivalent to recording the cumulative sum Sn =
Pn

i=0 xi and raising the alarm

whenever

Sn �min
i

Si > h (2.22)

for some h. In practice, this means we need only keep two registers. First, Sn which

accumulates xi, and Smin, which stores the minimum value of Si encountered so far.

Work on concept drift often describes adaptations of CUSUM to the problem of con-

cept drift detection [10][24]. These works cite the original paper by Page [47], making the

author of these variations unclear.

The study of concept drift per se appears to originate with the STAGGER algorithm

[56]. This work was heavily influenced by cognitive psychology, so the original usage of

“concepts drift” denoted changes in conjunctive definitions of words. For example, a con-

cept drift could be bachelor = unmarried AND man changing to bachelor = unmarried

AND woman. This work also introduced the STAGGER dataset, which has become a stan-

dard benchmark in the field.

The FLORA family of algorithms [66][64][65] expanded the study of symbolic concept

drift, and introduced many ideas to the field including recurring concepts, sliding windows

of recent examples, and dynamic changes to the window size depending on the stability

of the concepts.

Klinkenberg and Joachim subsequently expanded the study of concept drift to real-

valued domains [36]. Their approach was to train an SVM online, using a sliding window

whose size is chosen to minimise generalisation error, which is estimated with the ⇣↵

metric. Although this approach was e�cient and theoretically well motivated, it was tied

specifically to SVMs, and so was not a general solution to the problem of concept drift

detection.
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The sequential probability ratio test (SPRT) [59] detects when a time series drifts from

one distribution P1(z) to a new distribution P2(z). Let z0, z1, . . . , zn be some sequence.

SPRT monitors the metric

T
n
0 = log

P1(z0, z1, . . . , zn)

P2(z0, z1, . . . , zn)
=

nX

i=0

log
P1(zi)

P2(zi)
(2.23)

When T
n
0 > L, for some parameter L, SPRT signals that drift has occurred.

2.2.2 Drift Detection Method

Drift detection method (DDM) [23] maintains a running observed mean of the residual

time series p. The uncertainty around the true error rate is estimated via a normal distri-

bution (the true posterior is a beta distribution) with standard deviation s =
p

p(1� p)/i.

A register of the lowest values of p and s are maintained, denoted pmin and smin. If

s + p > smin + 2 · smin, DDM emits a drift warning, and all new instances from that

point are stored in a bu↵er. If s+ p > smin + 3 · smin, DDM emits a signal that drift has

occurred, and the model is retrained on the instances in the bu↵er.

RDDM [9] is a variant of DDM with periodic resets to become more reactive to changes

in the error-rate. EDDM [8] is another variant, which monitors for changes in the distri-

bution of gaps between errors, rather than changes in the error rate itself.

2.2.3 Sliding Window Methods

Statistical Test of Equal Proportions (STEPD) [46] essentially approaches concept drift

detection by testing the hypothesis “the error-rate changed n time steps ago for some

fixed, and pre-set n” at each time step. This is achieved by partitioning the data stream

history into 1) a sliding window of the most recent n values, and 2) the preceding values.

The statistical test of equal proportions is then used to test whether the rates of the two

partitions are significantly di↵erent.

FTDD , FPDD, and FSDD [16] are variants of STEPD, which uses Fischer’s exact

test in place of the test of equal proportions, because the latter is inappropriate for small

or imbalanced data.

WSTD is another variant, which uses the Wilcoxon rank sum statistical test instead

of the test of equal proportions, and additionally limits the size of the second partition

[15].

PL (paired learners) is another sliding window method [7]. However, rather than

testing for di↵erences in error rates of a single model between the two partitions, it

instead tests for di↵erences in the error rates of two models. One model, the “stable

learner” is trained online on the entire data stream, and the other, the “reactive learner”
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is trained only on the contents of the sliding window. If the proportion of instances in

the window that are classified correctly by the reactive learner, but not the stable learner,

exceeds some threshold, then drift is indicated.

FHDDM may be considered a hybrid of DDM and sliding window methods [50]. At

each time step the error rate in the sliding window is estimated. If this error rate signifi-

cantly exceeds its lowest value, then drift is indicated.

SEQDRIFT2 [48] uses the Bernstein bound to compare a window of the most recent

instances with a reservoir of the preceding instances.

MDDM [51] uses both a sliding window and geometric or linear weighting, and uses

the McDiarmid bound. It detects increases in the weighted error rate in the window.

2.2.4 Adaptive Windowing

A major flaw of the sliding window approaches is that they are brittle with respect to the

window size parameter. If the window size is too large then there will be a large delay in

the drift detection. If the window is too small then the detector will not be able to detect

small drifts over random noise. ADWIN combats this problem by dynamically increasing

or decreasing the window size [13]. The authors explain:

The idea is simple: whenever two “large enough” subwindows of W exhibit

“distinct enough” averages, one can conclude that the corresponding expected

values are di↵erent, and the older portion of the window is dropped. In other

words, W is kept as long as possible while the null hypothesis “µt has remained

constant in W” is sustainable up to confidence �.

This involves testing for drift at each time step in the window, which requires a multi-

ple comparisons correction. One of the main advantages of ADWIN is that it provided

theoretical guarantees on its false positive and negative rates.

SEED [32] is another drift detection method which considers multiple drift points.

Unlike ADWIN, the data are processed in batches or “blocks”, so most possible drift points

are automatically excluded. When contiguous blocks are evaluated via the Hoe↵ding

inequality to have the same rate, then the two are merged, thus eliminating one potential

drift point.

2.2.5 EWMA

An exponentially weighted moving average (EWMA) [53] is an estimation of a variable

x, which gives exponentially more weighting to more recent examples:

x̂t = �x̂t�1 + (1� �)xt (2.24)
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where � is the decay factor. EWMA is employed in several drift detection methods as

it provides a way of estimating the current error rate of the model without knowing

how far back in time a drift occurred. When the EWMA estimation of the error rate

is significantly larger than the overall mean error rate, then we may conclude drift has

occurred. ECDDM is a straightforward application of EWMA to concept drift detection,

deriving p-values from a lookup table [54]. LFR also uses EWMA, although p-values are

derived from Monte Carlo estimation [60].

2.2.6 HDDM

Fŕıas-Blanco et al. [22] cast the drift detection problem as follows. There are n examples

x1, . . . , xn, and a hypothesised drift point d. The instances before the drift point are

denoted X = x1, . . . , xd�1, and their mean is denoted µX . Similarly, those instances after

the drift point are denoted Y = xd, xd+1, . . . , xn, and their mean µY . These means are

estimated using either the sample average or exponentially weighted average. Depending

on which estimator is used, the method is known as HDDMA or HDDMW . The estimations

are denoted µ̂X and µ̂Y , respectively. The authors derive bounds for

Pr(µ̂X + ✏ < µ̂Y |µX � µY )

and

Pr(µ̂X > µ̂Y |µX + ✏ < µY ),

thus bounding the false positive and false negative rates, respectively.

This is incorporated into an online drift detection algorithm as follows. At time t, the

hypothesised drift point is set to d = t, and is fixed at this value until enough instances

are accumulated to the right of the drift point that either

Pr(µ̂X + ✏ < µ̂Y |µX � µY )

is statistically insignificant, in which case a drift is signalled, or

Pr(µX + ✏ < µY )

is statistically insignificant, in which case d is set to the current time step. A major

advantage of HDDM is that the derived bounds do not assume that the data stream to

be monitored is Bernoulli, so can be used to detect drift on real-valued loss streams.
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2.2.7 Region Drift

Most of the drift detectors discussed so far have supposed that when concept drift occurs,

all the data before the drift becomes irrelevant. Liu et al. [40] introduced the notion of

region drift, in which concept drift only a↵ects a “region” of instance space. Thus all the

data outside of this region from before the drift can be reused when retraining the model.

The authors present a new drift detector, local drift degree (LLD), which processes data

in batches and uses the nearest neighbour methods to determine if drift has occurred in

each region since the previous batch.

2.2.8 Data Batches

Degree of drift (DoF) [57] considers data in batches. If the most recent two batches have

a heterogeneous Euclidean/overlap metric (HEOM) which is s standard deviations above

the mean of past batches, then drift is indicated.

2.2.9 Unbalanced Classes

Wang et al. [62][61] argue that most drift detectors, which detect concept drift via mon-

itoring for increases in the error rate are unsuitable for data streams with unbalanced

classes, because

the minority class contributes too little to these performance measures com-

pared to the majority class [and] too few examples from the minority classes

can make the time arbitrarily long until the concept drift is detected.

Wang et al. thus propose drift detection method for online class imbalance (DDM-OCI).

This monitors for decreases in the recall of the minority class, rather than decreases in

the overall accuracy of the model.

Linear four rates (LFR) [60] expands on this idea. In addition to monitoring the recall

of the minority class, it also monitors the recall of the majority class and the precision

of both. It uses an EWMA-style [53] estimator with lookup tables to detect changes in

these rates.

PerfSim [5] similarly monitors all the components of the confusion matrix, and uses

the cosine similarity test to detect changes between batches of data. CSDD [29] uses the

same test, but uses a sliding window rather than batches of data.

2.2.10 Bayesian Concept Drift Detection

Many researchers have proposed Bayesian approaches to change point detection, a prob-

lem closely related to concept drift detection. Barry and Hartigan [11] derived an O(n3)
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algorithm for detecting multiple change points within a time series. Fearnhead [21] devel-

oped an O(n2) algorithm to achieve the same task.

Adams and MacKay [4] adopted a Bayesian approach to change point detection for

online contexts. This approach considers a hypothesis space of l = 1, l = 2, . . . , where

l = i indicates that a drift point occurred i time steps in the past. At each new time step,

the posterior Pr(l = i) for each i is recalculated.

Bach and Maloof [6] adopted the Adams-MacKay approach to concept drift adap-

tation. They proposed the Bayesian conditional model comparison (BCMC) algorithm,

which makes predictions according to an ensemble of Bayesian learners, one for each value

of l = i. The models are weighted according to the Pr(l = i) posteriors. The authors

also propose a more e�cient algorithm which approximates BCMC, called the pruned

Bayesian conditional model comparison (PBCMC).

2.3 Conclusion

With some abstraction, we can consider drift detection methods of consisting of three

components. First is the method of generating drift point candidates. The common

approaches are using a sliding window, in which case the candidate drift point is the start

of the window, aggregation, in which case the data stream is aggregated into blocks and

the spaces between these blocks are used as drift point candidates, batching, in which the

spaces between batches of data are drift point candidates, and thresholding, in which case

the candidate drift point is derived by monitoring for a summary statistic exceeding some

threshold.

The second component of a drift detector is a statistical test. Many detectors make

use of Hoe↵ding’s test, Bernstein’s test, McDiarmid’s test, Fischer’s exact test, or the

cosine test.

The third component is the operationalisation of concept drift. The general problem

of concept drift detection is virtually insoluble in its most general form, so drift detectors

operationalise the problem to make it tractable. The most common operationalisation is

to detect increases in the error rate of the model. Other approaches include monitoring

for increases in the precision and recall. All the existing drift detectors we have surveyed

are summarised according to these components in Table 2.1.
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Table 2.1: Summary of existing drift detectors

Detector Drift Points Statistical Test Operationalisation

ADWIN aggregation Hoe↵ding Accuracy
CSDD cosine batches Recall, Precision
CUSUM threshold - Accuracy
DDM threshold - Accuracy
DDM-OCI threshold - Recall
DoF batches - Accuracy
ECDDM threshold - Accuracy
EDDM threshold Hoe↵ding Accuracy
FHDDM window Hoe↵ding Accuracy
FLORA - - Accuracy
HDDM window Hoe↵ding Accuracy
LDD batches - Accuracy
LFR threshold - Recall, Precision
MDDM window McDiarmid Accuracy
PerfSim window cosine Recall, Precision
PL window - Accuracy
RDDM threshold Hoe↵ding Accuracy
SEED Blocks Hoe↵ding Accuracy
SeqDrift2 window Bernstein Accuracy
SPRT threshold - -
STAGGER - - Accuracy
STEPD window - Accuracy



3
Multiple Drift Detector

In this chapter we introduce multiple drift detector (MDD), a framework for early detec-

tion of multiple types of concept drift. Section 3.1 discusses the motivation for MDD.

Section 3.2 describes the setting of MDD. Section 3.3 provides pseudocode for MDD.

Section 3.4 introduces a graphical interface for MDD. Section 3.5 illustrates the utility

of MDD for our motivating example. Section 3.6 summarises this chapter and discusses

future work.

3.1 Motivation

Existing drift detectors typically take the following approach. The time series of one or

more performance metrics is monitored, and if a decline in the mean or rate of metric

can be detected, then drift is signalled. The most common metric is accuracy [23][8][13],

although some detectors also use precision or recall [60][37][61]. The rationale is that

under stable conditions the performance of the model should either improve or remain

steady, so a decline in performance must indicate concept drift has occurred.

We posit that in some applications, a better approach to concept drift detection is to

not only monitor the time series of performance metrics, but also the time series of feature

values and labels. Multiple drift detection (MDD) achieves this via multiple instantiations

of a drift detector to monitor for feature drift, label drift, and real drift.

The main benefit of this approach is it can provide an early warning of concept drift.

21
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Specifically, if feature drift occurs, a drift detector which is monitoring the feature time

series can alert the user to this change before all the labels become available. The user

will then have the opportunity of recalling the model if it will no longer be able to perform

adequately under the new distribution.

The second benefit of this approach is that it helps the user obtain a more complete

picture of how the data stream is evolving. A drift detector which simply signals when one

or more performance metrics has declined a↵ords little interpretability. By monitoring

each of precision, recall, accuracy, label frequencies, and feature values, the user can better

understand what exactly is driving a decline in model performance and how the decline

is manifesting. This can help the user in choosing a dataset for model retraining.

In the following section we formalise the “standard approach” to concept drift detec-

tion and how it can be extended. We then present an algorithm based on these extensions.

3.2 Setting

Let Z = z0, z1, . . . , zn be some time series. We can abstractly describe a drift detector as

a function which takes time series and outputs an assessment of whether the distribution

of the time series changes between z0 and zn.

Specifically, the drift detector takes the time series of a performance metric, and

determines whether the expected value of the metric declines, as an improvement of the

metric may simply indicate normal learning. Often the metric is restricted to binary

values [46][13][8], although there are some drift detection methods, such as HDDM [22],

which allow real-valued performance metrics. The most common metric used is accuracy

(or equivalently, error rate), obtained via the time series of the model’s residual.

We can thus represent drift detectors as functions whose domain is arbitrary length

time series, and whose output is a binary evaluation of whether the expected value of the

time series has decreased. We denote this as:

D�(Z) =

8
<

:
1 if E[z0] > E[zn]

0 otherwise
(3.1)

This function is then incorporated into a loop as in Algorithm 1 for practical drift adap-

tation. Often the drift detector is parameterised with a confidence value ↵. The drift

detector only indicates that drift has occurred if the expected value of the metric has

declined with confidence ↵.

D�(Z;↵) =

8
<

:
1 if Pr(E[z0]  E[zn])  ↵

0 otherwise
(3.2)
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Algorithm 1 The typical approach to adapting to concept drift with a drift detector.
Require: Drift detector D(Z)
Require: Model
for t = 0, 1, 2, . . . do

M = m0,m1, . . . ,mt . The time series of the performance metric up to t

if D(M) = 1 then
model.retrain()

else
model.update(xt, yt)

end if
end for

Given a drift detector as described above, we wish to construct a more general con-

cept drift detector which can detect changes in the distribution of features, labels, and

performance metrics. We will demonstrate how to construct such a drift detector by

The first step of this construction is to notice that we can construct a detector of

increases in the expected value of a time series by simply applying a drift detector to one

minus the time series:

D+(Z;↵) =

8
<

:
1 if Pr(E[z0] � E[zn])  ↵

0 otherwise
(3.3)

= D�(1� Z;↵) (3.4)

where 1� Z = (1� z0), (1� z1), . . . , (1� zt). Note that if the time series is real-valued,

it su�ces to take the negative of the time series:

D+(Z) = D�(�Z). (3.5)

Equation 3.4 covers both the real and binary valued cases.

We can also construct a bidirectional drift detector, which indicates both increases

and decreases of the expected value of the time series:

D±(Z;↵) =

8
<

:
1 if Pr(E[z0] = E[zn])  ↵

0 otherwise
(3.6)

= D+(Z;↵/2) _D�(Z;↵/2). (3.7)

Note that we have halved the confidence threshold as a Bonferonni correction for multiple

comparisons.

Detecting changes in the distribution of a categorical variables can be achieved by
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detecting changes in the rates of each of the categories:

D(Z;↵) =

8
<

:
1 if Pr(z) has changed (with p < ↵)

0 otherwise.
(3.8)

= D(Z(0);↵/nc) _D(Z(1);↵/nc) _ · · · _D(Z(nc);↵/nc) (3.9)

where nc is the number of categories, and

Z
(i) = z

(i)
0 , z

(i)
1 , . . . , z

(i)
t (3.10)

= 1[z0 = i],1[z1 = i], . . . ,1[zt = i] (3.11)

.

Detecting changes in multi-dimensional variables can be achieved by detecting changes

in each of the dimensions separately:

D(Z;↵) =

8
<

:
1 if Pr(z) has changed (with p < ↵)

0 otherwise.
(3.12)

= D(Z(0);↵/nd) _D(Z(1);↵/nd) _ · · · _D(Z(nc);↵/nd) (3.13)

where nd is the number of dimensions, and Z
(i) = z

(i)
0 , z

(i)
2 , . . . , z

(i)
t .

Using these compositions, we can construct a multi-drift detector out of an arbitrary

base drift detector.

3.3 Pseudocode

The multiple drift detector framework essentially consists of five procedures. First, is

feature preprocessing. This converts categorical features into dummy variables and free

text into bag of words representations. This allows all features to be processed as binary

variables. The preprocessing pseudocode is given in Algorithm 2. Second, there is the

initialisation procedure for constructing the multiple drift detector out of a base drift

detector, following the procedure set out in the previous section. The initialisation pseu-

docode is given in Algorithm 3. Third, there is the procedure for updating the multiple

drift detector when a new instance becomes available, whose pseudocode is given in Al-

gorithm 4. Fourth, there is the procedure for updating the multiple drift detector when

a new prediction becomes available, whose pseudocode is given in Algorithm 5. Finally,

there is the procedure for updating the multiple drift detector when a new label becomes

available, whose pseudocode is given in Algorithm 6. Algorithm 7 shows how all these

algorithms are used together, by describing the entire updating loop of the multiple drift
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detector.

Note that this Algorithms 4, 6, 5 use a single threshold to indicate when drift has

occurred. Many drift detectors use two thresholds [23][8][22]. Passing the first threshold

results in a drift warning, after which all new instance-label pairs are placed in a bu↵er.

Passing the second threshold results in a drift signal, at which point the model is retrained

on the content of the bu↵er. It is trivial to extend the given code to similarly accommodate

two thresholds, which may or may not be useful depending on context.

Algorithm 2 Preprocess features for multiple drift detector

Require: The domains of each of the features X(0)
, X

(1)
, . . . , X

(n)

function Preprocess(x(0)
, x

(1)
, . . . , x

(n))
x
0  []

for x
(i)
, X

(i) do
if X

(i) = R then
x
0  x

0 [ x
(i)

. Leave real-valued features as-is.
else if X

(i) = {0, 1} then
x
0  x

0 [ x
(i)

. Leave binary features as-is.
else if X

(i) = k 2 N then
for i=1,2,. . . ,k do . Convert categorical features to dummy variables.

x
0  x

0 [ 1[x(i) = k]
end for

else if X
(i) is free-text with vocabulary V then

for v 2 V do . Convert free-text features to bags-of-words
x
0  x

0 [ (v 2 x
(i))

end for
end if

end for
end function

Algorithm 3 Initialise multiple drift detector
Require: Drift threshold ↵

Require: Instance dimensionality nx

Require: Number of feature labels ny

Require: Base drift detector D�(Z;↵)
function Initialise(.)

D+(Z;↵) = D�(1� Z;↵) . Construct each of the drift detectors
D±(Z;↵) = D�(1� Z;↵/2) _D+(Z;↵/2)
Dx(X) = D±(X(0);↵/4nx) _D±(X(1);↵/4nx) _ · · · _D±(X(nx);↵/4nx)
Dy(Y ) = D±(X(0);↵/4ny) _D±(X(1);↵/4ny) _ · · · _D±(X(ny);↵/4ny)
Dp(P ) = D±(X(0);↵/4ny) _D±(X(1);↵/4ny) _ · · · _D±(X(ny);↵/4ny)
Dr(R) = D±(X(0);↵/4ny) _D±(X(1);↵/4ny) _ · · · _D±(X(ny);↵/4ny)
X, Y, P,R, Ŷ  [], [], [], [], [] . Initialise each time series as empty
ŷ lookup  {}

end function
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Algorithm 4 Update multiple drift detector when a new instance becomes available.
function AddInstance(xt)

X  X [ xt

if Dx(X) then
status Featuredrift

end if
end function

Algorithm 5 Update multiple drift detector when a new prediction becomes available.
function AddPrediction(ŷt)

Ŷ  Ŷ [ ŷt

ŷ lookup[t] ŷt

if Dy(Ŷ ) then
status Labeldrift

end if
end function

Algorithm 6 Update multiple drift detector when a new label becomes available.
function AddPrediction(yt)

ŷt  ŷ lookup[t]
R

(yt)  R [ 1[yt = ŷt] . Update recall
P

(ŷt)  P [ 1[yt = ŷt] . Update precision
if Dp(P ) or Dr(R) then

status Realdrift
end if

end function

Algorithm 7 Main loop of multiple drift detector
Initialise(.)
while No drift detected. do

if new xt then
ŷ  model.predict(xt)
xt  Preprocess(xt)
AddPrediction(ŷt)
AddInstance(xt)

else if new yt then
AddLabel(yt)

end if
end while

3.4 Graphical Interface

To assist a human expert in interpreting the evolution of the data stream, we have im-

plemented a graphical interface for MDD. In our implementation of MDD, a trace of

each time series, along with the status of each component drift detector, is written to a

CSV file. Each trace is then rendered as a time series using the Dash framework [2]. A
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Figure 3.1: The graphical interface for multiple drift detector.

screenshot of the interface is shown in Figure 3.1.

Each time series is smoothed using a Hanning kernel [18], whose width can be adjusted.

Each of accuracy, precision, recall, labels, features has a tab in which these time series

can be inspected. The data points are coloured to indicate the drift status at that point

in time, green points indicate that he time series is normal, orange that it is suspected

of drift (i.e., the drift detector is in the “warning” state), and red indicates that the

drift detector has been triggered. A summary of state of the data stream is given in the

top right corner of the app, where it is stated whether concept drift, feature drift, label

drift, or real drift have been detected by MDD. Within the individual tabs, one is given

a break-down of the specific label values or features for which drift has been detected.

3.5 Illustration

In this section we illustrate MDD framework using our GP referrals triage motivating ex-

ample. We explore three drift scenarios, and describe how MDD will facilitate responding

to the drift appropriately.

3.5.1 Scenario 1: Retrain

The human expert commissioned to maintain the GP referrals triage decision support

system receives a message from MDD indicating that model recall has decreased for

priority 4, and precision has decreased for priority 3, as shown in Figure 3.2. Upon
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Figure 3.2: Scenario 1: Declining precision for triage priority 3 and declining recall for triage priority 4.

investigation, it turns out that a new study has been released showing that coronavirus

is more dangerous than previously thought. Patients with this condition are now given

priority 4 rather than priority 3.

The expert responds by removing all referral documents from the dataset of patients

with coronavirus from before the study was released. The model is retrained on the new

dataset, and is redeployed.
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3.5.2 Scenario 2: No Action

The human expert receives a message indicating that feature drift and label drift have

both occurred. The expert inspects the feature time series in the graphical interface, and

it appears that there has been an increase in referrals for patients with coronavirus, as

shown in Figure 3.3. Because these instances are given priority 4, there has also been an

increase in priority 4 labels, hence the label drift. Because the model has been trained

on an adequate amount of referral documents which include coronavirus, it is able to

correctly predict the priorities and this is correct behaviour so no action is required.

The expert checks in on model performance a week later when the clinicians have

caught given priority labels to the referrals under the new distribution. The performance

metrics haven’t changed significantly, and the model was indeed adjusting to the change

in distribution correctly.

3.5.3 Scenario 3: Recall

The human expert receives a message indicating that feature drift has occurred. The

expert inspects the feature time series in the graphical interface, and it appears that

there has been an increase in referrals for patients with coronavirus, as shown in Figure

3.4. Because there were no coronavirus patients in the training data, the experts conclude

that the model will be unable to make sensible triage predictions for this current wave

of patients.These predictions are therefore clinically unsafe, and so should be withdrawn

from the decision support system.

The expert therefore adds a rule to the decision support system stating that if a

patient has coronavirus, the model should refrain from making a prediction, and annotate

the referral as requiring a clinician to label it. Once a su�cient dataset of labels for

coronavirus patients has accumulated, the model is retrained to handle this new class of

patient referral.

3.6 Conclusion

In this chapter we introduced a framework for providing early warnings that a model

requires retraining or recall, the multiple drift detector (MDD). MDD monitors the in-

stance distribution, the label distribution, and model performance metrics for indicators

of concept drift. We also present a graphical interface for visualising the evolution of the

data stream and the state of MDD.

In future work, we would like to validate that MDD works well in real applications by

performing a user study.
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Figure 3.3: Scenario 2: Increase in the rate of triage priority 4 and increase in the rate of feature

“Corona virus”.
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Figure 3.4: Scenario 3: Increase in the rate of feature “Coronavirus” only.
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4
Calibrated Drift Detection Method

In this chapter we introduce calibrated drift detection method (CDDM), a drift detection

method which detects increases in the irreducible error rate, rather than the overall error

rate. Section 4.1 motivates the approach to concept drift detection taken by CDDM.

Section 4.2 discusses the setting and notation of CDDM. Section 4.3 provides the actual

CDDM algorithm. Section 4.4 discusses theoretical and practical limitations of CDDM.

Section 4.5 summarises this chapter and discusses future work.

4.1 Motivation

Most, if not all, extant drift detectors assume that significant increases in the error rate

of the base learner are due to concept drift and require model retraining. For example,

Gama et al. [23] state

Statistical [sic] theory [42] guarantees that while the class distribution of the

examples is stationary, the error rate of the learning algorithm (pi) will de-

crease when i increases. A significant increase in the error of the algorithm,

suggest a change in the class distribution, and that the actual decision model

is not appropriate.

However, this assumption is invalid in environments when 1) some labels can be predicted

more easily than others, and 2) feature drift occurs. Consider the following (fictional)

example from our motivating domain of medical triage:

33



34 Calibrated Drift Detection Method

At a coronavirus emergency clinic, patients with coronavirus symptoms are

being triaged. Young patients have a low mortality rate from coronavirus so

are given low priority. Old patients have a high mortality rate so are given

high priority. Middle aged patients, however, may have high or low mortality

depending on other factors, so may be given a high, low, or medium priority.

The learner is easily able to discover the relationship between age and priority,

but fails to make use of other features. The model thus has a higher error rate

for middle aged patients than young or old patients. If there is an increase in

the number of middle aged patients with coronavirus, then the overall error

rate of the model will increase.

A concept drift detector will detect the increase in the error rate and signal

that the model requires retraining. However, because the actual relationship

between instances and labels has not changed, retraining the model would at

best be a waste of time, and at worst result in an inferior model trained on a

smaller dataset.

Conversely, suppose that instead of an increase in the middle aged patients

there is a decrease in middle aged patients. This will reduce the average di�-

culty of the prediction task, and reduce the error rate of the model.

Suppose that shortly after this occurs, the clinic decides to change its triage

policy for dealing with middle aged patients. Because the model is trained to

implement the old policy, its error rate for middle aged patients will further

increase, but this increase may be cancelled out by the decrease from the

reduced number of middle aged patients.

Thus, a concept drift detector may fail to notice the real drift which has

occurred, and the model will not be retrained despite the change in the decision

boundary. This situation may therefore result in a false negative.

This example illustrates that a concept drift detector should not monitor for increases

in the error rate of the model per se. Instead it should monitor for increases in rate of

reducible error due to real drift which is not predictable ex ante from the prediction task

becoming more di�cult on average. An increase in the irreducible error due to virtual

drift which is predictable ex ante is a confounder. It can cause false negatives and false

positives, such that the model may not be retrained when it should be, and may be

retrained when it does not need to be.

In the following section we introduce the concepts of reliability and calibration to

formalise the ex ante di�culty of a prediction task. In Section 4.3 we then describe an

algorithm which builds on these concepts to solve our motivating problem.
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Figure 4.1: Calibration Graph

4.2 Setting

Let y be the true label given to some instance x, and ŷ be the label predicted by the

model. Due to noise, stochasticity, or the limited inferential capabilities of the learner,

there is some probability that the model will make the wrong prediction. We thus denote

q = Pr(y = ŷ) (4.1)

as the reliability of the model, or the probability that the model will make the correct

prediction, for the given instance.

We assume our model makes probabilistic predictions. We can thus talk about the

model confidence as the probability assigned by the model to its predicted label, denoted

q̂ = P̂r(y = ŷ). (4.2)

A plot of a model’s confidence versus its reliability is called a reliability diagram [45],

and is illustrated in Figure 4.1.

When a model’s confidence is equal to its reliability, q = q̂, we say that the model

is calibrated [58][26][45]. For example, if a calibrated model makes 10 predictions, and

assigns a 0.9 confidence to each of them, then in expectation, one of those predictions will

turn out to be incorrect. The reliability diagram in Figure 4.1 is of a calibrated model,

as it shows an identity relationship between confidence and reliability.

When a model is calibrated, we can estimate the accuracy and error rate of the model

from its confidence. Figure 4.2 shows a reliability diagram plus the distribution over

confidence values, and thus the distribution over reliability. The accuracy is the expected

value of the reliability

Acc = E[q] (4.3)
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Figure 4.2: A calibrated model.
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Figure 4.3: An increase in irreducible error rate.

and the error rate is one minus the accuracy:

Err = 1� Acc = E[q]. (4.4)

In this manner we may derive an ex ante estimation of the model’s accuracy based on its

confidence scores. If the actual ex post accuracy significantly deviates from this accuracy,

then we have evidence that the model is miscalibrated, which we take as evidence of

concept drift.

Suppose the average di�culty of the prediction task increases, as described in Section

4.1, and illustrated in Figure 4.2. A calibrated model will decrease in its mean confidence,

and our ex ante expected error rate will increase. When we observe an ex post increase

in the error rate we will know that this can be attributed to feature drift rather than

real drift, and so the model should not be retrained. In other words, we have observed

an increase in the irreducible error rather than reducible error. We can thus avoid false

positive.

Conversely, consider the other case described in Section 4.1 and illustrated in Figure

4.4, where the average di�culty of the prediction task decreases around the same time

as real drift occurs. In this case the mean confidence of the model decreases, and so ex

ante error rate decreases. If the ex post error rate does not decrease, this indicates that
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Figure 4.4: A decrease in irreducible error masking an increase in reducible error.

concept drift has occurred. In other words, there has been an increase in the reducible

error rate, but it has been obscured by a decrease in the irreducible error rate. We can

thus detect that the model should be retrained despite no increase in the overall error rate

and thus avoid a false negative.

4.3 Algorithm

CDDM detects increases in reducible error rather than overall error by monitoring for

di↵erences in the ex ante accuracy and the ex post accuracy.

Intuitively, we can consider CDDM to be placing a “bet” on each prediction. If the

model has confidence q̂ in its prediction, then it will buy a bet that it is correct for $q̂. If

the prediction turns out to be correct, the model will receive a payo↵ of $1, otherwise it

will receive a payo↵ of $0. The payo↵ is denoted:

� =

8
<

:
1� q̂ if y = ŷ

�q̂ if y 6= ŷ

(4.5)

The expected value of the payo↵ under normal, calibrated conditions is zero:

E[�] = Pr(y = ŷ) · (1� q̂)� Pr(y 6= ŷ) · q̂ (4.6)

= q · (1� q)� (1� q) · q (4.7)

= 0. (4.8)

If we have observed n payo↵s, �1, �2, . . . , �n, then we can use Hoe↵ding’s inequality [31]
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to bound the probability of seeing a large average payo↵:
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Where ai and bi are lower and upper bounds on �i, respectively. Because 0  q̂  1, we

have at = �1  1[yt = ŷt]� q̂t  bt = 1.
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CDDM maintains a sliding window of the most recent n payo↵ values. Equation 4.12

gives a p-value for an average payo↵ across this window at least as extreme as observed.

If this value falls below some critical threshold, we may reject the null hypothesis and

conclude that the model is miscalibrated. In this case, CDDM will signal that drift has

occurred.

Similar to several other drift detectors [23][22][66], we use two critical thresholds:

↵warn, a warning threshold, and ↵drift, a drift threshold. When the p-value falls below

↵warn, CDDM emits a warning that drift may be occurring, and all new instances are

placed in a bu↵er. When the p-value falls below ↵drift, CDDM indicates that concept

drift has occurred. The model is then retrained on the instances in the bu↵er. The full

pseudocode is given in Algorithm 8.

4.4 Limitations

CDDM su↵ers from two major limitations. The first is that CDDM requires learners to

be calibrated, but most machine learning algorithms are not calibrated out of the box.

The second is that small deviations from calibration will not be detectable by CDDM.

4.4.1 Calibration

CDDM requires the base learner to be calibrated. In fact few machine learning models

are calibrated out of the box, and require post-hoc transformations of their probabilistic

predictions to become calibrated.

Some models are “overconfident”, meaning that the model’s confidence tends to ex-

ceed its reliability, q̂ > q. Some deep learning models such as LeNet [39] su↵er from
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Algorithm 8 CDDM algorithm
Require: Warning threshold ↵warn

Require: Drift threshold ↵drift

Require: Window size N

Window  []
status  normal
for yt, q̂t, ŷt in the data stream do

�t  1[y = ŷ]� q̂

Window  {�t}[ Window
n = Window.length
if n > N then

Window.pop()
end if
k  |Window.mean|
p 2 exp

⇣
�nk2

2

⌘

if p  ↵drift then
status  drift

else if pmin  ↵warn then
status  warn

end if
end for

overconfidence [27].

Conversely, some models are “underconfident”, meaning that the model’s reliability

tends to exceed its confidence, q̂ < q. Some deep learning models such as ResNet [28]

su↵er from underconfidence [27].

Other models tend to “extremism”, meaning that they are underconfident for con-

fidences close to 0, and overconfident for confidences close to 1. Extremist models can

be considered as pushing q̂ values towards 0 and 1 with respect to q values. Maximum

margin methods such as boosted trees and boosted stumps are prone to extremism [45].

The opposite behaviour to extremism is “moderatism”, meaning the model is under-

confident for confidence values close to 1 and overconfident for confidence values close to

0. Thus, q̂ values are pushed away from 0 and 1 with respect to q values. Näıve Bayes

models are prone to moderatism due to making unrealistic independence assumptions

[45].

The terms “overconfident” and “underconfident” are standard in the prediction liter-

ature [58]. “Extremism” and “moderatism” are our own terminology. These behaviours

are illustrated with reliability diagrams in Figure 4.5.

Models are often not calibrated because they are designed to optimise some met-

ric other than calibration, such as accuracy. However, even in cases where models are

optimised for calibration, miscalibration can still occur. For example, minimising cross

entropy is a standard optimisation objective in deep learning [25]. This is a proper scoring
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(a) Underconfidence (b) Overconfidence

(c) Extremism (d) Moderatism

Figure 4.5: Reliability diagrams for a common model behaviours.

rule [26], so this optimisation encourages both calibration and accuracy. However, many

deep learning models still fail to calibrate [27]. This may be due to lack of robustness

against dataset shift [43], or overfitting the training data [27].

A model which is not calibrated can be remedied by applying a post-processing func-

tion to a model’s probabilistic predictions. This function is called a calibration map

[45]. A variety of methods for generating calibration maps have been developed. Some of

the major methods are given below.

Logistic calibration - also called Platt scaling [52] fits a sigmoid function, given by

q =
1

1 + exp(aq̂ + b)
(4.13)
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to model probabilities. The parameters a and b are fitted using maximum likelihood esti-

mation on a calibration set. Logistic calibration tends towards exactly correct calibration

when the model’s confidence values are normally distributed [38].

Isotonic calibration is a non-parametric type of calibration map [69]. It is therefore

more flexible than logistic calibration, but more prone to overfitting. The only assumption

isotonic regression makes about the reliability diagram is that it is isotonic, that is, it is

monotonically increasing.

Beta calibration is a generalisation of sigmoid calibration [38]. A beta calibration map

takes the form

q =
1

1 + 1/
⇣
ec

q̂a

(1�p̂)b

⌘ (4.14)

where a, b � 0 so that the map is monotonically non-decreasing. This map can be fitted

as easily as a logistic map [38]. Beta calibration is intended to overcome some of the

drawbacks of logistic calibration, such as distortions for many classifiers including Naive

Bayes and adaboost. Beta calibration tends towards exactly correct calibration when the

model’s confidence values are beta distributed. Experiments have found beta calibration

to be superior to logistic calibration for Näıve Bayes, adaboost, Random Forests, logistic

regression, support vector machines, and multilayer perceptrons [38].

Other calibration map methods include histogram binning [68], Bayesian binning into

quantile (BBQ) [44], matrix and vector scaling [27], and temperature scaling [27][30].

4.4.2 Small Deviations from Calibration

CDDM cannot detect small deviations from calibration. Suppose the base learner has

been calibrated up to time t � n, and from t � n to t it has been slightly overconfident

(or underconfident). Specifically,

�i =

8
<

:
0 0  i < t� n

|q̂i � qi| t� n  i < t

(4.15)

Given a window size N , the miscalibration will be on the cusp of detectability from CDDM

when the p-value given by Equation 4.12 is equal to the drift detection threshold ✏:

✏ = exp

✓
�n

2
�
2

2N

◆
. (4.16)
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Figure 4.6: Detection delay versus overconfidence magnitude for CDDM.

Solving for � gives the minimum overconfidence value which can be detected within n

time steps for a given drift threshold and window size:

� =

r
�2N

n2
ln
⇣
✏

N

⌘
. (4.17)

This relationship is plotted for a range of window sizes with drift threshold 0.01 in Figure

4.6. In this plot we can see that, for example, an overconfidence of � = 0.4 can be detected

within 250 time steps for a window size of 2000.

The smallest overconfidence value which can possibly be detected by CDDM is found

by setting n = N . That is, it is only detectable when the entire window has filled up with

the miscalibrated payo↵s. The range of detectable miscalibrations is thus given by

1 � � �
r
� 2

N
ln
⇣
✏

N

⌘
. (4.18)

The dashed line in Figure 4.6 indicates this lower bound on detectable miscalibration.

This shows that, for example, a miscalibration of magnitude � = 0.1 will be undetectable

with a window size of N = 200.

4.5 Conclusion

In this chapter we introduced calibrated drift detection method (CDDM). We argued

that a drift detector should detect increases in the reducible error rate rather than the

overall error rate, so as to avoid unnecessary retraining. CDDM takes this approach
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to concept drift detection by detecting when a model becomes miscalibrated. However,

CDDM still has some significant limitations. Theoretically, CDDM can only detect mean

overconfidence below a certain level determined by the window length. Practically, CDDM

assumes that a learner is initially calibrated, whereas most models require prediction post-

processing to achieve calibration.

A promising direction for future work would be building a calibration map online,

and detecting when this calibration map changes, rather than assuming the learner is

calibrated in the first place.
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5
Bayesian Concept Drift Detection

In this chapter we explore Bayesian approaches to concept drift detection. Section 5.1

motivates a Bayesian approach to concept drift detection. Section 5.2 introduces Bayesian

drift detection method (BDDM), an algorithm for computing posteriors probabilities of

concept drift. Section 5.3 introduces Bayes with adaptive forgetfulness (BWAF), an ef-

ficient method for approximating posterior probabilities of concept drift. Section 5.4

summarises this chapter and discusses future work.

5.1 Motivation

In this chapter we consider methods for deriving a posterior probability distribution over

concept drift locations, and of the current error rate of the model. We claim that such a

derivation is valuable for many practical data science applications where a human is in the

loop and there are strict requirements on performance. As illustration, we return to our

motivating example of GP referrals triage. The details of this description are fictional.

A model has been trained to predict triage labels for GP referrals documents.

A drift detector has been installed to detect when the error rate of the model

increases, at which point it will alert a data scientist that the model requires

retraining.

Suppose the data scientist receives an alert that the error rate of the model has

increased. The data scientist now has to decide 1) whether the model really

45
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requires retraining, and if so 2) how far back in time should the new training

data extend so that the new model is trained only on post-drift instances.

The model is required to have an error rate of at most 5%, or it is not consid-

ered fit for purpose. The cost of retraining the model is $500, as it requires

the data scientist to spend several days on site collecting data, and retraining

the new model, validating the new model, and deploying the new model. The

cost of keeping a model which is not fit for purpose deployed is estimated at

$5000 due to errors in the triage support leading to ine�cient allocation of

medical sta↵. If Pr(err > 0.05) is the probability that the error rate is greater

than 5%, then it is worthwhile retraining the model as long as

Pr(err > 0.05)⇥ $5000 > (1� Pr(err > 0.05))⇥ $500. (5.1)

This illustrates that it is not only important for the data scientist to know

that the error rate has probably increased, but to also have a probability

distribution over how much it has increased.

If the data scientist has access to a posterior probability distribution over

possible error rates at the current time, as in Figure 5.1, then they can make

a more informed decision about whether the model requires retraining or not.

Let us suppose the data scientist decides that the model does require retrain-

ing. They must now decide which data to use to retrain the model. Other

things being equal, the data scientist would like to use more data rather than

less so that the model will generalise better. However, the less recent the data,

the more likely it is to have become outdated by the concept drift.

Again, the data scientist would be assisted by a posterior probability mass

function, this time over possible times at which the concept drift occurred, as

in Figure 5.2. This gives the posterior probability of a concept drift having

occurred at each of the time steps. For time step t, this probability is denoted

Pr(d = t).

Figure 5.2 also gives a cumulative mass function. This illustrates the posterior

probability of concept drift having occurred by each time step. This is denoted

as Pr(d  t).

With these posterior distributions, the data scientist can decide which in-

stances to use in the training data to maximise expected utility.

For example, suppose the cost of including outdated instances is equal to the

cost of not including relevant instances in the training data. In this case the

data scientist will want to include all instances after the time at which the
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Figure 5.1: Posterior distribution over the original and current error rates of the model when concept
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Figure 5.2: Probability mass function and cumulative mass function over times at which a concept drift

may have occurred.

probability of concept drift having occurred was 50%. Thus in Figure 5.2, the

model would be retrained using instances which became available after t = 40.

In the following section we formally describe the Bayesian posterior distribution over

error rates and drift locations, which we then develop into a practical algorithm.
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5.2 Bayesian Drift Detection Method

In this section we introduce the Bayesian drift detection method (BDDM). BDDM pre-

cisely computes posterior distributions over drift points, as well as the error rates at the

start and end of the time series. It is therefore more precise than other drift detectors,

but at the cost of having O(t2) time complexity and O(t) space complexity.

5.2.1 Setting

We pose the problem of computing a posterior over drift points as follows. Given a

Bernoulli time series

Z = z0, z1, . . . , zt (5.2)

we would like to compute the probabilities that the rate of the series changed at each time

step, as well as the probability no change occurred. The time series in question is the series

of residuals of the model. A change in the rate of this series indicates that the error rate

has changed which indicates drift. This is the same strategy as used by most other drift

detectors [23][13][6], and is referred to as the described as the accuracy-operationalisation

in Chapter 2.

We denote the probability that a drift occurred at time step i as Pr(d = i). Specifically,

Pr(d = i) is the prior probability. For convenience, we denote the probability that no drift

has occurred as Pr(d = 0). The posterior probability is the probability of drift conditioned

on the observed time series, denoted Pr(d = i|Z).
We can express the posterior probability of drift at a given time step using Bayes’

rule:

Pr(d = i|Z) = Pr(Z|d = i)

Pr(Z)
Pr(d = i) (5.3)

=
Pr(Z|d = i)

Pt
j=0 Pr(Z|d = j) Pr(d = j)

Pr(d = i) (5.4)

For convenience, we will denote the joint probability of a given sequence with a given drift

point as

Pi = Pr(Z, d = i) (5.5)

= Pr(Z|d = i) Pr(d = i). (5.6)

The posterior probability that drift has occurred is given by

Pr(d = 0|Z) =
Pt

i=1 PiPt
i=0 Pi

. (5.7)
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5.2.2 Priors

We require a method for setting unitary priors on possible drift points.

tX

i=0

Pr(d = i) = 1 (5.8)

We propose two systems of priors for BDDM, one for evenly spaced time series and one for

unevenly spaced time series. Our motivating example of GP referrals triage is an example

of an unevenly spaced time series as GP referral documents or clinician labels can arrive

at any time.

A natural prior for evenly spaced time series is a geometric distribution [21][6]. We

suppose that there is a constant rate of concept drift, and that drift may only occur once.

This produces the prior

Pr(d = i) =

8
<

:
(1� �)t if i = 0

(1� �)d�1
� if i > 0

(5.9)

where � 2 [0, 1] is the drift rate, which is the only parameter of BDDM.

We can generalise this strategy to unevenly spaced time series by modelling drift as a

Poisson process. Again, we have a “rate” of drift, but now the rate is per unit time rather

than per time step.

Pr(d = i) =

8
<

:
P [N(⌧t) = 0] if i = 0

P [N(⌧i�1) = 0]P [N(⌧i) > 0] if i > 0
(5.10)

=

8
<

:
e
��⌧t if i = 0

e
��⌧i�1

�
1� e

��(⌧i�⌧i�1)
�

if i > 0
(5.11)

=

8
<

:
e
��⌧t if i = 0

e
��⌧i�1 � e

��⌧i if i > 0
(5.12)

where � > 0 is the drift rate, ⌧i is the time at which the i-th value arrives, and N(⌧) is

the number of drifts which have occurred at time ⌧ . Note that if the instances are evenly

spaced in time then this is equivalent to the geometric prior.

5.2.3 Likelihoods

Suppose the error rate of the model x is drawn from a uniform distribution over [0, 1].

Then the probability of observing a given sequence of residuals is given by the beta
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function.

Pr(Z; x) =

Z 1

0

x

Pt
i=0 zi(1� x)

Pt
i=0(1�zi)dx (5.13)

= B

 
1 +

tX

i=0

zi, 1 +
tX

i=0

(1� zi)

!
(5.14)

=

�Pt
i=0 zi

�
!
�Pt

i=0(1� zi)
�
!

(n+ 1)!
(5.15)

where B(a, b) is the beta function.

We assume that if concept drift occurs, the error rates for before and after the drift

are drawn independently. Thus

Pr(Z|d = k) = Pr(Z0:k�1) Pr(Zk:t) (5.16)

= B

 
1 +

k�1X

i=0

zi, 1 +
k�1X

i=0

(1� zi)

!
B

 
1 +

tX

i=k

zi, 1 +
tX

i=k

(1� zi)

!
. (5.17)

5.2.4 Pseudocode

By combining the priors from Equation 5.12 and likelihoods from Equation 5.17 into

Equation 5.4, we obtain the posterior probabilities of drift at each time step. BDDM is a

straightforward computation of this equation, as shown in Algorithm 9. Clearly, BDDM

is O(t2) in time complexity and O(t) in space complexity.

Algorithm 9 BDDM algorithm
Require: Drift rate �

Require: Warning threshold ↵warn

Require: Drift threshold ↵drift

for t = 0, 1, 2, . . . do
ct  (zt, 1� zt) . We store z values in dummy vectors.
for k = 0, 1, 2, . . . , t do

Pi  B

⇣
1 +

Pk�1
i=0 ci

⌘
B
�
1 +

Pt
i=k ci

�
Pr(d = ⌧k;�)

end for
P (drift) 

Pt
i=1 PiPt
i=0 Pi

if P (drift) > ↵warn then
status  warning

else if P (drift) > ↵drift then
status  drift

end if
end for
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5.2.5 Comparison with other Drift Detectors

BDDM is closely related, but distinct, from other Bayesian approaches to concept drift

detection and change point detection. The only other Bayesian method which is intended

to be directly applied to machine learning on volatile data streams is BCMC [6]. However,

this algorithm requires maintaining an ensemble of one model per potential drift point,

and so is too computationally expensive for many applications. The work of Adams

and MacKay [4], Barry and Hartigan [11], and Fearnhead [21] are concerned with the

more general problem of Bayesian multiple change-point detection in data streams, and

so cannot be directly applied to our problem.

Modelling drift in a Bayesian manner has many advantages compared to other drift

detection methods. By encoding information about time intervals in our priors, we can

apply drift detection to both unevenly spaced time series and evenly spaced time series,

a feature which most other drift detectors do not possess [20]. This allows the Bayesian

calculations to have more common sense behaviour, such as assigning a higher probability

to a concept drift occurring between consecutive instances separated by one day, than

consecutive instances separated by one hour.

Another advantage of BDDM is that it does not require parameter tuning. The only

parameter is the rate of drift used to calculate priors. This has an intuitive meaning,

and its approximate magnitude should be apparent in most domains. This is particularly

important in concept drift detection, as we often do not have annotated historical data for

parameter tuning. There are few other drift detectors which have such simple parameters

[23][47]. Other drift detectors require tuning thresholds [13][22], window sizes [46][7], or

decay rates [22][53], which do not have intuitive meanings.

Because we are assigning precise probabilities to each candidate drift point, we can

graphically plot the probability mass function (PMF) and cumulative mass function

(CMF) of concept drift, as shown in Figure 5.2. This makes the drift detector more

interpretable. Plotting a PMF or CMF is possible in principle for other drift detectors

which explicitly test several candidate drift points, such as ADWIN [13] and SEED [32].

However, because these detectors use frequentist statistics and bound probabilities rather

than estimating them, these distributions would be imprecise and non-unitary.

Another benefit of assigning probabilities to candidate drift point is it allows us to

model the posterior distribution over the rates of Bernoulli streams before and after the

drift point. The posterior distribution over rates in a stable Bernoulli time series is given

by the beta distribution.

Pr(q|Z) = x
Pt

i=0 zi(1� x)
Pt

i=0 1�zi

B
�
1 +

Pt
i=0 zi, 1 +

Pt
i=0 1� zi

� (5.18)
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(c) Immediate post-drift
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(d) Later post-drift

Figure 5.3: Progression of BWAF algorithm.

where q is the rate of the Bernoulli stream (the error-rate). Thus, the pre-drift posterior

distribution over rates can be calculated from a sum of beta distributions, weighted by

the posterior probabilities of each drift point.

�!
Pr(q) = P0 Pr(q|Z0:t) +

tX

i=1

Pi Pr(q|Z0:i�1). (5.19)

We can similarly derive the post-drift posterior distribution over rates.

 �
Pr(q) =

tX

i=0

Pi Pr(q|Zi:t). (5.20)

An illustration of these posterior distributions is given in Figure 5.1. These posterior

distributions add to the interpretability of BDDM, and allow retraining decisions to be

made on the basis of expected utility.
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5.3 Bayes With Adaptive Forgetfulness

We now introduce Bayes With Adaptive Forgetfulness (BWAF). This is a drift detector

which uses a simple heuristic update rule to approximate the behaviour of BDDM. BWAF

is very e�cient: it is O(1) space complexity and O(t) in time complexity.

5.3.1 Amnesiac Distributions

From the Equation 5.18, we saw that:

Pr(q|Z) /
tY

i=0

x
zi(1� x)1�zi . (5.21)

or in log form

ln (Pr(q|Z)) /
tX

i=0

ziz ln(x) +
tX

i=0

(1� zi) ln(1� x). (5.22)

In this formulation, it is natural to think of the posterior as accumulating update terms

from each new observed value. We wish to estimate the current rate of the Bernoulli

series at time t. Because drift may have occurred at any point in the past, we should give

greater weights to the more recent updates. A natural way to do this is with exponentially

decaying weights. Hence, we can heuristically estimate the posterior distribution over

rates as:

ln
⇣ �
Pr(q|Z)

⌘
/

tX

i=0

�
⌧t�⌧i(1� zi) ln(1� x) +

tX

i=0

�
⌧t�⌧iziz ln(x) (5.23)

where 0  �  1 is the forgetfulness parameter. Converting this back out of log form

gives

 �
Pr(q|Z) /

tY

i=0

(1� x)(1�zt)�⌧t�⌧i

tY

i=0

x
zt�⌧t�⌧i

. (5.24)

Which can be expressed more compactly as

 �
Pr(q) =

x
a(1� x)b

B(a+ 1, b+ 1)
(5.25)

with

a =
tX

i=0

zt�
⌧t�⌧i (5.26)

b =
tX

i=0

(1� zt)�
⌧t�⌧i . (5.27)
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Thus the current posterior distribution over rates at time t can be derived from Equation

5.25 and the following update rules

at =

8
<

:
zt if t = 0

zt + �
⌧t�⌧t�1at�1 if t > 0

(5.28)

bt =

8
<

:
(1� zt) if t = 0

(1� zt) + �
⌧t�⌧t�1bt�1 if t > 0

(5.29)

We call this PMF the retrograde amnesiac distribution, as it “forgets” about older values

from the time series.

We now wish to estimate the initial rate of the Bernoulli stream. Naturally, we should

use the opposite weighting scheme as for the retrograde amnesiac distribution. This can

be easily achieved with
�!
Pr(q) =

x
A�a(1� x)B�b

B(A� a+ 1, B � b+ 1)
(5.30)

where

A =
tX

i=0

zt (5.31)

B =
tX

i=0

(1� zt). (5.32)

These have the update rules:

At =

8
<

:
zt if t = 0

zt + At�1 if t > 0
(5.33)

Bt =

8
<

:
(1� zt) if t = 0

(1� zt) + Bt�1 if t > 0.
(5.34)

We call this PMF the anterograde amnesiac distribution, as it forgets about recent values

of the time series.

5.3.2 Adaptive Forgetfulness

With posterior distributions over the initial rate and current rate of the Bernoulli stream,

we can compute the probability that the rate has increased.

Pr(qt > q0) =

Z 1

0

�!
Pr(q0)

Z 1

q0

 �
Pr(qt) dqt dq0. (5.35)
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We call this the drift probability. If the drift probability exceeds some critical threshold,

BWAF will signal that drift has occurred.

How do we choose the forgetfulness parameter? We face a trade-o↵: if the parameter

is small then the retrograde amnesiac distribution is more forgetful. This allows it to

shift to a new distribution more quickly, and thus have a shorter detection delay. But

it also means that it never remembers enough data to know the current rate with much

precision. That is, the entropy of the posterior distribution will always be quite high.

Thus, small changes in the rate will never be detected.

A good way to get around this problem is to dynamically adjust the forgetfulness

parameter. When the drift probability is large, we want the retrograde amnesiac to be

updated much more than the anterograde amnesiac. Thus the forgetfulness parameter

should increase with the drift probability. The simplest way to achieve this is with the

following update rule

�  

8
<

:
0.5 when t = 0

Pr(qt > q0) when t > 0
(5.36)

The progression of the anterograde and retrograde amnesiac distributions is illustrated

in Figure 5.3. If no drift has occurred, the anterograde amnesiac distribution will converge

towards the current rate. The retrograde amnesiac distribution will oscillate around the

current rate, and the drift probability will oscillate around 0.5. The retrograde amnesiac

distribution will thus remain high-entropy. When drift occurs, the drift probability will

increase. The forgetfulness parameter will also increase, allowing the retrograde amnesiac

to converge towards the current distribution while the anterograde amnesiac continues to

estimate the original distribution, thereby further increasing the forgetfulness parameter.

The drift probability and the forgetfulness parameter will continue to mutually reinforce

one another, until the drift probability reaches the critical threshold.

The pseudocode for the full BWAF procedure is given in Algorithm 10

5.3.3 Comparison with Other Drift Detectors

BWAF retains several of the advantages of BDDM. It retains the ability to view the

posterior distribution over the current and initial rates of the Bernoulli stream. It does

not retain the ability to plot a PMF or CMF of drift occurring, although one can create

a diagram analogous to a CMF by plotting the drift probability over time. BWAF is

therefore not as interpretable than BDDM, but is still more interpretable than most drift

detectors.

As with BDDM, BWAF can accommodate unevenly spaced time series. The choice of

units for these intervals will a↵ect the performance of BWAF, and choosing appropriate

units is not straightforward. One might adopt the heuristic that the units should be
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such that the mean interval is one, so that BWAF will behaviour similarly with unevenly

spaced time series and evenly spaced time series.

A major advantage of BWAF is that it does not have any parameters. By dynamically

adjusting the forgetting parameter it can in principle detect drifts of any magnitude or

any level of abruptness. It is not clear if the same is true of any other drift detectors.

DDM has no parameters, but cannot detect drifts which are small compared to sigma [23].

In this respect, BWAF is superior even to BDDM, which has the drift rate parameter. As

aforementioned, in the case of unevenly spaced time series there is an implicit parameter

in the choice of interval units.

It is interesting to note that BWAF has parallels with many disparate approaches to

drift detection. The Bayesian connection has already been mentioned. Like DDM and

EDDM, BWAF derives p-values from changes in the distribution over the rates of Bernoulli

series [23][8]. Similar to ADWIN, a parameter of the model adapts online depending on

drift conditions [13]. Finally, the exponential decay of distribution updates is very similar

to EWMA [53].

Algorithm 10 BWAF algorithm
Require: Warning threshold ↵warn

Require: Drift threshold ↵drift

�  0.5
a, b, A,B  0, 0, 0, 0
for t = 0, 1, 2, . . . do

a (1� zt) + �
⌧t�⌧t�1a

b zt + �
⌧t�⌧t�1b

A (1� zt) + A

B  zt +B

Pr(drift) 1
B(a+1,b+1)B(A�a+1,B�b+1)

R 1

0 (1� q0)A�a
q
B�b
0

R 1

q0
(1� qt)aqbt dqt dq0

�  Pr(drift)
if Pr(drift) > ↵warn then

status  warning
else if Pr(drift) > ↵drift then

status  drift
end if

end for

5.4 Conclusion

In this chapter we have introduced BDDM, a drift detector which computes exact pos-

terior probabilities of drift. We have also introduced BWAF, a heuristic drift detection

method inspired by BDDM. These detectors o↵er many advantages compared to other

drift detectors. They accommodate unevenly spaced time series as well as evenly spaced
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time series. They simplify the task of parameter tuning. They are also more transparent

than other drift detectors.

For future research, it would be useful to theoretically explore BWAF. Can perfor-

mance guarantees be obtained? Are there di↵erent heuristics for updating the forgetful-

ness parameter which work as well or better?
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6
Experiments

In this chapter we experimentally validate the novel drift detectors we have introduced,

and investigate the performance of drift detectors on a synthetic medical triage dataset.

Section 6.1 specifies the details of the experiments which will be run in this chapter.

Section 6.2 describes some experiments with Bernoulli data streams which validate the

approach taken by CDDM. Section 6.3 investigates the performance of our drift detectors

on a battery of benchmark data streams. Section 6.4 introduces a data stream which

simulates a medical referral triage environment, and investigates the performance of our

drift detectors on this dataset. Section 6.5 summarises this chapter and discusses future

work.

6.1 Experiment Details

This section provides details of the experiments which will be performed in the following

sections. The experiments are implemented using a modified version of the Tornado

framework [49]. The experiments are performed on a 2.5 GHz Intel Core i7 with 16GB

RAM. The operating system is macOS Mojave version 10.14.6.

Within each experiment suite, we run all the drift detectors which are in Tornado.

These are ADWIN [13], CUSUM [47], DDM [23], EDDM [8], EWMA [53], FHDDM [50],

FHDDMS [50], FHDDMSadd [50], HDDMA [22], HDDMW [22], MDDMA [22], MDDME

[51], MDDMG [51], PH [47], RDDM [9], and SeqDrift2 [48]. CUSUM and PH are not the

59
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original procedure proposed by Page [47], but the modified versions described in [24]. We

compare these existing drift detectors with our novel detectors, BWAF and CDDM. We

do not test BDDM due to it being O(t2) and therefore inappropriate for data streams.

This covers the most popular drift detection methods, although there are some notable

omissions. All of these methods use the error-rate operationalisation of concept drift, so

LFR [60] which is a state-of-the-art detector with an alternative operationalisation would

have been a sensible comparison to CDDM. Similarly, BCMC is a Bayesian approach to

concept drift detection, so would have been useful to compare to BWAF. However, to our

knowledge, code for these detection methods is not publicly available.

Unless otherwise stated, the experiments are run using the three most popular mod-

els implemented in Tornado. These are the perceptron [14], the näıve Bayes, and the

Hoe↵ding tree [19].

We evaluate the performance of detectors using the following metrics. A drift signal

emitted by the drift detector within 250 time steps of a concept drift, is interpreted as a

true positive (TP). A failure to emit a drift signal within 250 time steps of a concept drift

is interpreted as a false negative (FN). A drift signal which is emitted when a concept

drift has not occurred in the last 250 time steps is interpreted as a false positive (FP).

The precision of the detector is given by

Precision =
NTP + 1

NTP +NFP + 2
(6.1)

where NTP is the number of true positives, and similarly for NFP and NFN . Note that

this formula makes use of Laplace smoothing to avoid division-by-zero errors. The recall

of the detector is given by

Recall =
NTP + 1

NTP + 1 +NFN + 1
(6.2)

The F1 score of the drift detector is given by

F1 =
2

Precision�1 + Recall�1 . (6.3)

The mean delay is the mean number of time steps between a concept drift occurring and

a drift signal being emitted. Because any signals after 250 time steps are considered false

positives, this is the maximum value for mean delay. Memory is the memory footprint

of the drift detector in bytes measured at the end of an experimental trial. Runtime is

the number of milliseconds between the beginning and end of the experimental trial.

Results are reported in tables in the form “mean (std)”, where “std” is the sample

standard deviation across the experimental trials. The best detector on each metric is

rendered in bold. The results are additionally visualised using CD diagrams [17].
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6.2 Bernoulli Experiments

In this section we describe experiments on a data stream which validates the benefit of

CDDM’s approach to concept drift detection. Specifically, we show how the pathologies

discussed in Section 4.1 of false positive and false negative drift detections can occur from

feature drift and variation in the di�culty of in prediction tasks.

In this data stream, instances consist of a single Bernoulli feature x. Labels y are

likewise Bernoulli variables, whose rate depends on the feature value:

Pr(x = i) =

8
<

:
1� � if x = 0

� if x = 1.
(6.4)

Pr(y = 1|x = i) =

8
<

:
↵ if x = 0

� if x = 1.
(6.5)

We will call � the feature rate, and ↵ and � the label rates. The instance-label joint

probability of the data stream is illustrated in Figure 6.1.

We are interested in two kinds of concept drift. First we have feature drift, in which

the feature rate changes, but the label rates remain the same.

(�,↵, �)) (�0
,↵, �) (6.6)

Second, we have real drift concurrent with virtual drift, in which the feature rate, and the

label rates change.

(�,↵, �)) (�0
,↵

0
, �

0) (6.7)

When a drift detector is triggered by real drift, this is a true positive. When a drift detector

is triggered by feature drift, this is a false positive. Our experiments with Bernoulli data

streams consist of 1000 time steps under the pre-drift distribution, followed 1000 time

steps in the post-drift distribution.

We use näıve Bayes as our learner. Näıve Bayes’ are known to be poorly calibrated

[45], so are typically a poor choice to use with CDDM. However, given this data stream has

one-dimensional instances, the usual issues of independence assumptions between features

does not arise.

In this data stream, we have one feature value whose label is hard to predict, and one

feature value whose label is easy to predict. Specifically, a feature an x = 0 instance is

consistently labelled as y = 0, with no noise. A feature value of x = 1 is also labelled as

y = 0, but with a noise rate 0.2. The feature rate is uniformly sampled for each instance
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1� ↵

↵

� 1� �

1� �

�

Pr(x = 0, y = 0)

Pr(x = 0, y = 1)

Pr(x = 1, y = 0)

Pr(x = 1, y = 1)

Figure 6.1: Distribution of the Bernoulli data stream.

of the data stream.

↵ = 0 (6.8)

� = 0.2 (6.9)

� ⇠ U [0, 1] (6.10)

Virtual drift is implemented by reversing the feature rate.

(�,↵, �)) (1� �,↵, �) (6.11)

Real drift is implemented by reversing the feature rate and reversing the first label rate.

(�,↵, �)) (1� �, 1� ↵, �) (6.12)

These two scenarios are illustrated in Figure 6.2.

If the initial feature rate is less than 0.5, then after virtual drift we will see an increase

in the error rate of the model due to an increase in the rate of “hard problems”.

Conversely, when the feature rate is greater than 0.5, when real drift occurs we will

see a decrease in the rate of “hard problems”, which will decrease the error rate. This

may hide the increase in the error rate due to the real drift itself, and can lead to false

negatives.
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Real drift

Feature drift

Figure 6.2: Distributional changes in the Bernoulli data stream.

More specifically, the change in error rate due to feature drift will be positive when

0 < �E (6.13)

< (1� �)� � �� (6.14)

< � � 2�� (6.15)

� < 0.5. (6.16)

Thus, any feature rate greater than 0.5 may trigger false positives in error-rate detectors.

The change in error rate due to real drift is positive when

0 < �E (6.17)

< (1� �)(1� �)� �� (6.18)

< 1� � � � (6.19)

� < 0.8. (6.20)

Thus false negatives may occur when the feature rate is above 0.8.

The results of the trials on this data stream are given in Table 6.1, and illustrated in

Figure 6.3. CDDM achieves the highest precision and F1 score of any of the detectors
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Figure 6.3: CD diagram of Bernoulli datasets.

(although not significantly greater than the runner up at p < 0.05 significance).

6.3 Benchmark Datasets

In this section we evaluate the concept drift detection methods we have introduced on a

battery of benchmark datasets. The Tornado framework provides implementations of the

following synthetic data streams:

• CIRCLES Each instance consists of two attributes x1, x2 ⇠ U [0, 1]. Each concept

consists of three values, r, xcirc, ycirc 2 [0, 1], representing the radius of a circle, and

x and y coordinates of the centre of a circle. And instance is given a positive label

if it falls within the circle, otherwise it is given a negative label. Sampling is done

such that an equal number of positive and negative instances occur. The concept

parameters cycle through the values of [0.15, 0.2, 0.5], [0.2, 0.4, 0.5], [0.25, 0.6, 0.5]

and [0.3, 0.8, 0.5].

• LED Each concept in the LED task is a digit displayed on a 7-bit LED interface.

There are 10 labels (the digits 0, 1, 2, . . . , 9) and 7 binary features (each of the display

bits). For example, the label corresponding to the instance [1, 1, 1, 1, 1, 1, 0] is 0. In

addition to the concept bits, there are also n irrelevant and random-valued binary

attributes. The position of the irrelevant attributes changes with each concept, so

the model must learn anew which attributes are decision-relevant.
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• MIXED Each instance is a mix of two binary attributes w, v 2 {0, 1}, and two real-

valued attributes x1, x2 ⇠ U [0, 1]. Labels are assigned according to y = 1[v^w^y <

0.5 + 0.3 sin(3⇡x)]. After each context change the classification is reversed.

• SEA Each instance consists of three attributes x1, x2, x3 ⇠ U [0, 10]. Each concept

consists of a threshold ✓, such that y = 1[x1 + x2 + x3 > ✓]. That is, if the binary

label denotes whether the sum of the attributes exceeds the threshold. Thresholds

cycle between the values [8, 9, 7, 9.5].

• SINE1 Each instance consists of two attributes x1, x2 ⇠ U [0, 1]. Binary labels are

given by y = 1[x1 > sin(x2)]. When concept drift occurs, the labels are reversed.

• SINE2 As with SINE1, the attributes are x1, x2 ⇠ U [0, 1]. Binary labels are given

by y = 1[x1 > 0.5 + 0.3 sin(3⇡x2)]. When concept drift occurs, the labels are

reversed.

• STAGGER Instances consist of categorical attributes size 2 [small,medium, large],

color 2 [red, green], shape 2 [circular, non� circular]. Each concepts is a first or-

der logic expression. Specifically, the following concepts are cycled: y = 1[size =

small ^ color = red], y = 1[color = green _ shape = circular], and y = 1[size =

medium _ size = large].

These data streams provide constitute the most popular benchmarks used in the concept

drift detection literature. Each of these data streams has the following parameters:

• Concept Length The number of instances between concept drifts. If this number

is small then the data stream is volatile, if this number is small then the data stream

is stable.

• Transition Length The number of instances over which a concept drift occurs. If

the transition length is n, and there have been i instances since the concept drift,

then the probability that the new concept is used is Pr(new � concept) = i/n,

otherwise the previous concept is used. If the transition length is low then the drift

is abrupt. Otherwise the stream is gradual.

• Noise Rate The rate at which any given label will be replaced with a di↵erent

label. For binary labels, the label is simply inverted. Otherwise, a di↵erent label is

chosen at random. If this quantity is high, then the data stream is noisy.

We are interested in how drift detector performance varies with noise and transition

length. We therefore run experiments using each of the variations of the above datasets

• High Noise Noise rate is set to 0.4, transition length is set to 50 and concept length

is set to 1000.
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Figure 6.4: CD diagram of benchmark datasets.

• Low Noise Noise rate is set to 0.02, transition length is set to 50 and concept

length is set to 1000.

• Gradual Drift Transition length is set to 250, noise rate is set to 0.1, and concept

length is set to 1000.

• Abrupt Drift Transition length is set to 0, noise rate is set to 0.1, and concept

length is set to 1000.

• Long concepts Transition length is set to 50, noise rate is set to 0.1, and concept

length is set to 25000.

• Short concepts Transition length is set to 50, noise rate is set to 0.1, and concept

length is set to 250.

We run each datastream with two base learners. Näıve Bayes and Hoe↵ding trees [19] are

two of the most popular, so we use these.

We run two iterations of each of the 7 data streams, for each of the four variations,

with both of the base learners. The results are given in Table 6.2 and visualised in Figure

6.4.

We see that BWAF performs well on benchmark datasets. It achieves the fifth highest

precision (significantly less than the best detector at p < 0.05), the seventh best recall

(not significantly less than the best detector at p < 0.05), the fourth best F1 score (not
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significantly less than the best detector at p < 0.05), the best mean delay (although not

significantly greater than the second best at p < 0.05), the fifth best memory consumption

(not significantly worse than the best detector at p < 0.05), but the second worst runtime.

By contrast, the performance of CDDM is undistinguished. Because the instances

in these data streams are high dimensional, the learners are miscalibrated, triggering

a high rate of false positives. On recall and memory, CDDM is ranked in the middle

the detectors. On all other metrics it is in the lower half of detectors. This a�rms

the statement in Section 4.5 that CDDM must be extended with online calibration for

practical usage.

6.4 Triage Simulation

In this section we evaluate our novel concept drift detectors in the motivating example

domain of GP referrals triage. Due to a lack of real triage data annotated by concept

drift, we instead use a synthetic data stream with concept drift deliberately introduced.

We base our synthetic data stream on the MIMIC-III dataset - a publicly available

repository of free-text electronic health records [35]. There are several types of documents

within the dataset, so we limit our usage to ‘radiology’ documents, which have the ad-

vantage of having structured headers. We preprocess the 522,279 radiology documents

by converting the text into bag-of-words format. To keep the instance dimensionality

reasonable, we eliminate tokens which occur in fewer than 40% or more than 60% of doc-

uments, resulting in 59,652 dimensional features. We shu✏e the order of the documents to

make sure the only concept drifts which occurs in the data stream have been deliberately

engineered.

To simulate a triage rule, we randomly label 30 referral documents with priority labels

1 to 4. We then train a decision tree on these instance-label pairs. We repeat this

several times to obtain a set of “triage concepts”. Concept drift is simulated by labelling

the instances prior to the drift point using one triage concept, and then labelling the

instances after the drift with another, randomly selected concept. In each instantiation

of the data stream a single concept drift occurs halfway through the stream.

We run two iterations of the medical triage data stream under each of the variations

described in Section 6.3, namely high noise, low noise, gradual drift, abrupt drift, long

concepts, short concepts. The results are given in Table 6.3 and visualised in Figure 6.5.

Similar to Section 6.3, we see competitive performance from BWAF. It achieves the

second highest precision, recall, and F1 score, as well as the third best mean delay (none of

which is significantly worse than the best detector at p < 0.05). The memory consumption

is sixth best (not significantly less than the best detector at p < 0.05), although the

runtime is fifth worst.
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Figure 6.5: CD diagram of synthetic triage data streams.

As in Section 6.3, the performance of CDDM is undistinguished. CDDM achieved the

worst precision and F1 of all the detectors, although it achieved the sixth best recall, the

best mean delay, the second best memory consumption, and the third lowest runtime.

As before, this poor performance can be attributed to the models being miscalibrated, a

problem which is especially acute given the high dimensionality of the data.

6.5 Conclusion

In this chapter we experimentally validated our novel drift detectors, and investigated

the performance of drift detectors on a synthetic medical triage dataset. We have seen

that CDDM can achieve leading precision F1 and precision scores on Bernoulli streams

with feature drift and uneven noise. We have also seen that BWAF is a competitive

drift detector on a battery of benchmark data streams, and a synthetic GP referrals

triage data stream. It consistently achieved one of the best precision, recall, F1, and

detection delays scores. BWAF’s memory usage reasonable, consistently within the top

quartile, although its runtime was generally not competitive. CDDM did not perform

competitively in the benchmark or medical triage experiments. We attribute this to the

models being miscalibrated, thus a�rming the claim made in Section 4.5 that CDDM

should be combined with online calibration for practical usage.
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7
Conclusion

In this chapter we summarise our work and promising future work. Section 7.1 highlights

major achievements of this thesis. Section 7.2 identifies the main limitations of our work.

Section 7.3 discusses the most promising future work.

7.1 Achievements

The following list highlights the major achievements of our research.

Chapter 3

• We introduced multiple drift detector (MDD), a framework for monitoring for sev-

eral types of concept drift, specifically real drift, label drift, and feature drift.

• This allows users to receive early warnings that a model is no longer fit for purpose

due to changes in the instance distribution, so that the model can be recalled if

necessary.

• MDD is flexible and can be implemented using any existing drift detection method.

• We also introduced a graphical interface for visualising the evolution of the data

stream.

Chapter 4

73
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• We introduced calibrated drift detection method (CDDM), a drift detector which

only detects reducible performance degradation.

• CDDM is thus able to avoid false positives due to feature drift which do not change

the decision boundary. In these cases, retraining the model is at best pointless and

at worst detrimental due to reducing the size of the training data.

• We demonstrated the value of CDDM by achieving the highest F1 score on a

Bernoulli data stream with feature drift and variation in prediction di�culty.

Chapter 5

• We introduced Bayesian drift detection method (BDDM), a method for exactly

calculating posterior probabilities of drift timing and performance degradation.

• This allows user to make more rational decisions about model retraining, based on

expected utility.

• BDDM is able to accommodate uneven time series, by factoring the spaces between

instances into prior values.

• We also introduce beta with adaptive forgetfulness (BWAF), an e�cient heuristic

approximation of BDDM. BWAF requires only four registers of memory, and has

O(1) computational complexity. It also does not require parameter selection.

• BWAF was shown to be competitive on standard benchmarks, achieving the second

highest F1 score. It was also competitive on the synthetic triage data stream, again

achieving the second highest F1 score.

7.2 Limitations

We identify the following major limitations of this work.

7.2.1 Multiple Drift Detector

The purpose of this system was to provide early warnings of feature drift when label values

are delayed compared to feature values. However, there are limitations to the types of

feature drifts which can be detected.

By representing free-text features as bags of words, all information about the arrange-

ment of tokens is lost, and so only changes at the token-frequency level are detectable.

MDD also assumes independence between features. Thus changes in the correlation be-

tween features are undetectable by MDD.
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7.2.2 Calibrated Drift Detection Method

In Chapter 4, we identified two limitations of CDDM. The first was that it cannot detect

“small” deviations from miscalibration. The minimum detectable deviation depends on

the window size and the detection threshold, as specified in Equation 4.18.

The second limitation is that CDDM requires its model to be calibrated. Most machine

learning methods require post-processing of probabilistic predictions to become calibrated

[45], and these can require large amounts of training data to achieve [38] and are not

necessarily robust against dataset drift [43]. CDDM will therefore not be practical until

progress has been made on the problem of online calibration.

7.2.3 Bayesian Concept Drift Detection

The main limitation of BDDM is that it scales poorly, being O(t2) in time and O(t) in

space. It is thus impractical for high-volume data streams.

The main limitation of BWAF is that the heuristics it uses to approximate BDDM are

not well motivated theoretically. It is not known if they introduce biases or ine�ciencies.

7.3 Future Work

We suggest the follow as promising directions for future work.

7.3.1 User Testing

In Chapter 1, we motivated our work as bridging a gap between academic research on

concept drift and real data science applications. We used GP referrals triage as a moti-

vating example for this discussion. However, we have not yet shown that our algorithms

actually help users in real applications.

It would therefore be valuable to evaluate our algorithms and frameworks with user

tests and case studies. Are users able to e↵ectively interpret the early warnings from

MDD? How often do the kinds of false positives and false negatives that CDDM prevents

come up in real data streams? We have argued that the probability distributions provided

by BDDM and BWAF will help experts make expected utility calculations, but are real

application domains to well-specified enough for this to be possible?

7.3.2 Online Calibration

CDDM assumes that models are calibrated, which is not true of most learning algorithms.

Calibration can be achieved o↵-line via techniques such as calibration maps [38][45], but

these can require large samples of data [38].
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It would therefore be beneficial to investigate avenues by which CDDM could be

applied to models which are not automatically calibrated. One way to achieve this is via

calibrating learners online, an area which has not been well studied.

7.3.3 Bayesian Drift Detection

BWAF has shown promise as a drift detector, achieving the second highest F1 score of

the detectors tested in the benchmark data streams. It would be worthwhile conducting

further theoretical and experimental investigations into BWAF’s performance.

Specifically, it would be worth investigating whether it is possible to prove theoretical

guarantees on the false positive and false negative rate of BWAF. Additionally, experi-

mentally determining under what circumstances BWAF tends to perform well or perform

poorly. Can the computational e�ciency of BWAF be significantly improved? Are there

other heuristic approaches to Bayesian drift detection which achieve even better perfor-

mance than BWAF?
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and Francisco Herrera. A unifying view on dataset shift in classification. Pattern

recognition, 45(1):521–530, 2012.

[44] Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining well

calibrated probabilities using bayesian binning. In Twenty-Ninth AAAI Conference

on Artificial Intelligence, 2015.

[45] Alexandru Niculescu-Mizil and Rich Caruana. Predicting good probabilities with

supervised learning. In Proceedings of the 22nd International Conference on Machine

Learning, pages 625–632. ACM, 2005.

[46] Kyosuke Nishida and Koichiro Yamauchi. Detecting concept drift using statistical

testing. In International conference on discovery science, pages 264–269. Springer,

2007.

[47] Ewan S Page. Continuous inspection schemes. Biometrika, 41(1/2):100–115, 1954.

[48] Russel Pears, Sripirakas Sakthithasan, and Yun Sing Koh. Detecting concept change

in dynamic data streams. Machine Learning, 97(3):259–293, 2014.



BIBLIOGRAPHY 81

[49] Ali Pesaranghader. A Reservoir of Adaptive Algorithms for Online Learning from

Evolving Data Streams. PhD thesis, University of Ottawa, 2018.

[50] Ali Pesaranghader and Herna L Viktor. Fast hoe↵ding drift detection method for

evolving data streams. In Joint European conference on machine learning and knowl-

edge discovery in databases, pages 96–111. Springer, 2016.

[51] Ali Pesaranghader, Herna L Viktor, and Eric Paquet. Mcdiarmid drift detection

methods for evolving data streams. In 2018 International Joint Conference on Neural

Networks (IJCNN), pages 1–9. IEEE, 2018.

[52] John Platt et al. Probabilistic outputs for support vector machines and comparisons

to regularized likelihood methods. Advances in large margin classifiers, 10(3):61–74,

1999.

[53] SW Roberts. Control chart tests based on geometric moving averages. Technometrics,

1(3):239–250, 1959.

[54] Gordon J Ross, Niall M Adams, Dimitris K Tasoulis, and David J Hand. Exponen-

tially weighted moving average charts for detecting concept drift. Pattern recognition

letters, 33(2):191–198, 2012.

[55] N. Sands, S. Elsom, and R. Colgate. UK Mental Health Triage Scale Guidelines,

2015.

[56] Je↵rey C Schlimmer and Richard H Granger. Incremental learning from noisy data.

Machine learning, 1(3):317–354, 1986.

[57] Parinaz Sobhani and Hamid Beigy. New drift detection method for data streams. In

International conference on adaptive and intelligent systems, pages 88–97. Springer,

2011.

[58] Philip E Tetlock and Dan Gardner. Superforecasting: The art and science of predic-

tion. Random House, 2016.

[59] Abraham Wald. Sequential analysis. Courier Corporation, 2004.

[60] Heng Wang and Zubin Abraham. Concept drift detection for streaming data. In 2015

International Joint Conference on Neural Networks (IJCNN), pages 1–9. IEEE, 2015.

[61] Shuo Wang, Leandro L Minku, Davide Ghezzi, Daniele Caltabiano, Peter Tino, and

Xin Yao. Concept drift detection for online class imbalance learning. In The 2013

International Joint Conference on Neural Networks (IJCNN), pages 1–10. IEEE,

2013.



82 BIBLIOGRAPHY

[62] Shuo Wang, Leandro L Minku, and Xin Yao. A learning framework for online class

imbalance learning. In 2013 IEEE Symposium on Computational Intelligence and

Ensemble Learning (CIEL), pages 36–45. IEEE, 2013.

[63] Geo↵rey I Webb, Roy Hyde, Hong Cao, Hai Long Nguyen, and Francois Petitjean.

Characterizing concept drift. Data Mining and Knowledge Discovery, 30(4):964–994,

2016.

[64] Gerhard Widmer and Miroslav Kubat. Learning flexible concepts from streams of

examples: Flora2. 1992.

[65] Gerhard Widmer and Miroslav Kubat. E↵ective learning in dynamic environments

by explicit context tracking. In European Conference on Machine Learning, pages

227–243. Springer, 1993.

[66] Gerhard Widmer and Miroslav Kubat. Learning in the presence of concept drift and

hidden contexts. Machine learning, 23(1):69–101, 1996.

[67] Pranjul Yadav, Michael Steinbach, Vipin Kumar, and Gyorgy Simon. Mining elec-

tronic health records (ehrs) a survey. ACM Computing Surveys (CSUR), 50(6):1–40,

2018.

[68] Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability estimates

from decision trees and naive bayesian classifiers. In Icml, volume 1, pages 609–616.

Citeseer, 2001.

[69] Bianca Zadrozny and Charles Elkan. Transforming classifier scores into accurate

multiclass probability estimates. In Proceedings of the eighth ACM SIGKDD inter-

national conference on Knowledge discovery and data mining, pages 694–699, 2002.


